
Web Services

Planon Software Suite
Version: L105

© 1997 - 2024 Planon. All rights reserved.
Planon and the Planon logo are registered trademarks of Planon Software Development B.V. or its affiliates. All
other product and company names mentioned herein are trademarks or registered trademarks of their respective
companies. Planon Software Development B.V., its affiliates and/or licensors own the copyright to all Planon
software and its associated data files and user manuals.
Although every effort has been made to ensure this document and the Planon software are accurate, complete
and up to date at the time of writing, Planon Software Development B.V. does not accept liability for the
consequences of any misinterpretations, errors or omissions.
A customer is authorized to use the Planon software and its associated data files and user manuals within the
terms and conditions of the license agreement between customer and the respective legal Planon entity as soon
as the respective Planon entity has received due payment for the software license.
Planon Software Development B.V. strictly prohibits the copying of its software, data files, user manuals and
training material. However, customers are authorized to make a back-up copy of the original CD-ROMs supplied,
which can then be used in the event of data loss or corruption.
No part of this document may be reproduced in any form for any purpose (including photocopying, copying onto
microfilm, or storing in any medium by electronic means) without the prior written permission of Planon Software
Development B.V. No copies of this document may be published, distributed, or made available to third parties,
whether by paper, electronic or other means without Planon Software Development B.V.'s prior written permission.

About this Document

Intended Audience
This document is intended for Planon Software Suite users.

Contacting us
If you have any comments or questions regarding this document, please send them to:
support@planonsoftware.com.

Document Conventions
Bold
Names of menus, options, tabs, fields and buttons are displayed in bold type.

Italic text
Application names are displayed in italics.

CAPITALS
Names of keys are displayed in upper case.

Special symbols

Text preceded by this symbol references additional information or
a tip.

Text preceded by this symbol is intended to alert users about
consequences if they carry out a particular action in Planon.

mailto:support@planonsoftware.com
mailto:support@planonsoftware.com

Table of Contents

Table of Contents

Web services..6

Creating a web service..7

Adding a web service definition.. 7

Linking business object definitions to a web service definition... 7

Linking field definitions to a web service BO definition...8

Supported fields.. 8

Linking actions to a web service BO definition... 10

Generating, compiling and deploying a web service...10

Generating a web service... 11

Compiling a web service...12

Deploying a web service...12

Verifying the deployed web services...13

Configuring axis2.xml.. 13

Developing a Web service client... 15

Session management.. 15

SessionID vs Access key..16

Typical web service client operation... 18

Searching/filtering for instances of business objects.. 19

Handling date and date-time fields... 22

Modification date-time..23

Referring to other business objects from a web service...23

Reading and changing the status of a business object.. 24

Status transition for orders based on a standard order..25

Adding time schedule to Maintenance Activity Definition in web services.. 25

Adding person type reference field... 27

Working with Composite BOs using web services..28

4 - Table of Contents

Table of Contents

Filtering on Person type.. 29

Supported Methods in web services... 30

Web services and time zones... 34

Property date-time... 35

Transaction date-time.. 35

Neutral date-time... 36

BO types and their methods..38

Method Parameter Explanation... 41

Frequently asked questions...43

References... 45

Index...46

Table of Contents - 5

Web services

The Planon ProCenter software is often deployed in environments with many other
enterprise applications. Because of this, customers want to integrate Planon ProCenter
into their common business processes allowing other enterprise applications to interface
and use data from Planon ProCenter.

This approach shifts the focus of Planon ProCenter as being a ‘stand-alone enterprise
application’ to a broader ‘service oriented’ solution in which enterprise applications are
loosely coupled through well-defined interfaces.

In order to allow Planon ProCenter to play a role in such a Service Oriented Architecture
(SOA), we need to be able to interface with other applications. One of the major
approaches to SOA is the use of Web services for tying applications together. Planon
ProCenter offers basic support for Web services.

To be able to use Web services, make sure that the appropriate user group is linked to
the PPWS product definition: Web Services. For more information, see product definitions
(Accounts).

6 Web services

https://webhelp.planoncloud.com/en/index.html#page/Accounts/r_product_definition_fields.html

Creating a web service

This section describes how to create a web service.

Adding a web service definition
When you add a web service definition using Planon ProCenter, you define which
business objects the web service will use. Next, you define which fields of these
business objects will be used by the web service. Finally, with the business objects and
fields specified, you can generate your new web service.

P r o c e d u r e
1. Select Tools > Web Services on the navigation panel.
2. On the action panel, click Add.
3. Specify a unique System name and a Description for your new web

service.

The Package name is updated automatically. The package
name displays the input to the current web services
instance.

4. Click Save.

A new web service definition is added.

Linking business object definitions to a web service
definition
You can link business object definitions to the web services that you have created.

P r o c e d u r e
1. In Web services, select a web service definition.
2. On the action panel, click Link business object definitions.

Select one or more business objects from the Available list,
and move them to the In use list.

The business object definitions listed in the Link business object definitions dialog box
are the same configurable business objects that are listed in Field Definer.
If a business object is non-configurable, or, if it is currently under construction in Field
Definer, it is not listed in the Link business object definitions dialog box.

Linking business object definitions to a web service definition 7

3. Click OK. The business objects you selected are now linked to the new
web service.

Linking field definitions to a web service BO
definition
After creating a web service definition and linking business object definitions to it, you
can now specify fields for the business object definition.

P r o c e d u r e
1. In Web services, select a web service definition and go to Business

object definitions.
2. Select the business object definition for which you want to specify the

fields to be used by your new web service.
3. Go to Field definitions.
4. On the action panel, click Link field definitions.

Select one or more field definitions from the Available list and
move to the In use list.

The field definitions are linked to the business object definition.

5. Click OK.

When the Link field definitions dialog box opens, a number of fields are already selected
to be 'in use'. These fields are mandatory and if they are removed, you will not be able to
generate your web service. In addition, the fields listed in the Link field definitions dialog
box are the same as those in Field Definer, excluding auto-generated fields.

If you update the records via web services, you do not have to enter the mandatory
field values again if you are not actually updating them. The field values are inserted
automatically.

Supported fields

This section describes which fields are supported for web services.

General
A field is supported if the following conditions are met:

• The field is In use.

• A field type mapping exists.

8 Supported fields

• If a field is a system type field, it is supported (read-only) for retrieving
data from the application. See also System type.

This feature is only available to support filtering. These are read-only fields, it will not be
possible to enter/update values of an existing order.

• The field definition is not an association.

Supported field types
• BigDecimalFieldType

• BooleanFieldType

• IntegerFieldType

• StringFieldType

• LongVarcharFieldType

• NeutralDateFieldType *

• NeutralDateTimeFieldType *

• NeutralTimeFieldType *

• DateTimeFieldType *

• Volume

• Area

• Length

• ObjectRaumFile

• CADViewerSymbol

• AutoCADFile

• Image

• Tariff per unit area (M2Tariff)

• FileRef

• PnNameUserDefined

* For DateTime fields, following formats are supported:

• EEE MMM dd HH:mm:ss zzz yyyy

• yyyy-MM-dd'T'HH:mm:ss

• yyyy-MM-dd'T'HH:mm:ss.000'Z' (including the time zone)

System type
Supported fields 9

The type of field is sometimes required in order for interfaces to distinguish between
similar fields that differ by their type only. (For example to discern a commitment
cashflow from a commitment suppletion).

System types are supported except for:

• SysAuthorization

• SysDataSectionRef

• Syscode

• SysUpdateCount

Linking actions to a web service BO definition
After creating a web service definition and linking business object definitions to it, you
can also link actions to it.

P r o c e d u r e
1. In Web services, select a web service definition and go to Business

object definitions.
2. Select the business object definition for which you want to specify the

actions to be used by your new web service.
3. On the action panel, click Link actions.

Select one or more actions from the Available list and move
to the In use list.

Note that the actions will also include status transitions.

4. Click OK.

The actions are linked to the business object definition. The actions linked to the web
service can be seen in the Web service details selection level.

The Web service details selection level will be active only if a business object is selected
in the Business object definitions selection level.

Generating, compiling and deploying a web service
You can generate, compile and deploy a web service definition after adding it to Planon
ProCenter.

A .jar file named after the system name of the web service definition is created.

You can generate, compile and deploy a web service by performing the following steps:

10 Generating, compiling and deploying a web service

Generating a web service

P r o c e d u r e
1. Go to Web Service definitions.
2. In the elements list, select the web service definition you want to

generate as a web service.
3. In the Package name field, change the name as required.

For example, change the Package name as ‘com.planon’ with ‘Person’
as linked BO. By default, the system name is displayed as
WS. {System name}.

The Package name represents the folder structure in which the Web
service definition is generated.
In the above example, com.planon, the ‘planon’ folder is created in the
‘com’ folder.

4. On the action panel, click Generate web service. The web service files
are downloaded as a zip file that will be available in your browser's
download location.
The zip file will contain the jars and all the other required files to make
local adjustments to the web service. If you want to adjust the web
service, you will need to compile it locally outside of Planon
For this purpose, the zip file contains a build.txt file, which has
instructions on how to do this.

The src folder contains a folder named in accordance with the respective web service
definition. This folder contains subfolders for each of the business objects linked to the
web service definition.

<source directory>

 |- src/
 |- META-INF
 | - services.xml
 |- ws/
 |- <wsdefinition name>/
 |- <BusinessObjectname >/
 |- <BusinessObject.java>
 |- <BusinessObjectFilter.java>
 |- <BusinessObjectService.java>
 |- PlanonSessionService.java

- test/
 |- ws/
 |- <wsdefinition name>/
 |- < BusinessObject name >

Generating a web service 11

 |- <BusinessObject Client.java>
 |- <BusinessObject ClientStub.java>

|- build.xml|

The META-INF/services.xml file has the required service definition for Axis2. It contains
the information required to expose your business object as a web service.

Note that this file does not contain the WSDL of your web service.

The src/ws/<wsdefinition name> folder contains all the necessary web service source
files which are placed in their respective folders (the folder name is same as that of the
BO).

For example, if you generated a web service definition for Person BO:

- the Person.java file represents the actual business object (as POJO),

- the PersonFilter.java file is used for filtering on persons and

- the PersonService.java file provides the actual Web service: it defines the basic CRUD
operations for adding, reading, deleting and updating persons in Planon ProCenter.

The PlanonSessionService.java file is required for logging on and off from the Planon
ProCenter framework using Web services.

The test/ ws/<wsdefinition name> folder contains a sample client for your web service,
for example,PersonClient.java, which is placed in its respective folder (the folder name is
same as that of the BO), together with a utility class PersonClientStub.java.

You can use these sources to make a quick test for your web service using Java.

Compiling a web service

After having generated the web service, you have to compile it.

P r o c e d u r e
1. Go to Web service definitions.
2. On the action panel, click Compile web service.

A jar file containing the compiled web service is downloaded to your
browser's download location.

Deploying a web service

After having compiled the web service, you have to deploy it. Deploying the web service
needs to be done via the Axis2 web interface. The interface will allow inserting and
updating of web services. In the Planon Cloud there is a designated WebDAV location
where the web service files can also be uploaded to load / update a web service.

12 Deploying a web service

• Make sure the Web application setting Enable web service console is set to Yes. See
also Web application fields.
• The default URL for the Axis2/Nyx interface is: http://hostname:port/nyx. When
logging in, a Welcome page listing three links is displayed. After clicking the Services
and Administration links, you are required to log in using the specific account credentials
for Web Services. For Cloud, these credentials can be obtained via the Environment
management gadget. When clicking the Validate link, an empty page is displayed.
• You can create multiple web service definitions but can deploy only a single web
service definition at a time on a single instance of the web server.
• If you want to extend a web service you need to update the definition and compile a
new .JAR-file. In Axis you need to deactivate and remove the old web service before you
upload the new one.

Verifying the deployed web services
Shortly after you have deployed your Web service, you can verify if it is up and running
by using the path below: http://{servername or IP address}:{port number}/nyx/services/
listServices.

Two new web services should be listed, for example, 'Person', along with a
'PlanonSession'. Also listed is the EPR (Endpoint Resource) for accessing your Web
service from clients. Click on the service name-links to see the WSDL for that web
service.

When you update the web services to a new version, you must compile, generate and
deploy the web services once again. In case of a problem, contact your application
manager.

Whenever changes are made in any of the involved business objects in Planon
ProCenter, the web services must also be regenerated, compiled and deployed again to
affect the changes via web services as well.

Whenever the web services APIs change, the web services need to be regenerated,
recompiled and redeployed.

Configuring axis2.xml

For each protocol (HTTP and/or HTTPS), an AxisServletListener instance must be
declared in axis2.xml.

The axis2.xmlfile is found at the location:

...\Server\tomcat-*\webapps\nyx\WEB-INF\conf

If only a single protocol is used, no further configuration is required.
For example, if only HTTP is used, the following declaration must be present in
axis2.xml:

<transportReceiver name="http" class="org.apache.axis2.transport.http.

Configuring axis2.xml 13

https://webhelp.planoncloud.com/en/index.html#page/System%20Settings/r_Web_application_fields.html
http://hostname:port/nyx
https://webhelp.planoncloud.com/en/index.html#page/Environment%20Management%20Gadget/c_About_Planon_cloud_gadget_.html
https://webhelp.planoncloud.com/en/index.html#page/Environment%20Management%20Gadget/c_About_Planon_cloud_gadget_.html

 AxisServletListener"/>

If both HTTP and HTTPS are used, AxisServlet must know the ports used by HTTP
and HTTPS to expose WSDLs with correct endpoint URLs. Typically, the servlet API
doesn't allow a Web application to discover all the configured protocols. It only provides
information about the protocol, host name and port for the current request.

If only a single AxisServletListener is configured, then this information is enough to
let AxisServlet auto-detect the port number.

If both HTTP and HTTPS are used (or if WSDLs are retrieved through transports other
than AxisServlet), then AxisServlet has no way of knowing the port numbers until
it has processed at least one request for each protocol. To make WSDL generation
predictable in this scenario, it is necessary to explicitly configure the port numbers in
axis2.xml, such as in the following example:

<transportReceiver name="http" class="org.apache.axis2.transport.http.

 AxisServletListener">

<parameter name="port">8080</parameter>

</transportReceiver>

<transportReceiver name="https" class="org.apache.axis2.transport.http.

 AxisServletListener">

<parameter name="port">8443</parameter>

</transportReceiver>

14 Configuring axis2.xml

Developing a Web service client

Now your Web service is up and running, you can start developing clients that make use
of the Web service. For an easy start, take a look at the files located in the test/ directory
of your generated sources. The files provide a basic client for accessing a Web service
from Java.

For other languages, or other frameworks, you need the WSDL of your Web service as a
start for your client. For more information, refer to Verifying the deployed web services.

Session management
This section points out a number of common specifications for web services.

General
Web services can either access the application using a sessionID or an access key.

sessionID

To reduce storing data in the PLN_SESSIONDATA table and improve performance,
(stateless) in-memory sessionIDs are used for SOAP web services. Functionally, this
means that sessions used by web services will no longer be visible in the Session data
TSI.

General practice for web services is to ensure your own login and logout calls. This is
needed because the web service must have a Planon session(ID) in order to work.

The standard use case is:

• Log in

• Execute work (for example, adding a number or persons to Planon).

• Log out

Instead of using a sessionID, you can also use an access key.

Session resources
When using a sessionID, the following resource restrictions/specifications need to be
taken into account:

Session management 15

• Session timeout: to prevent web services from retaining too many
resources, there is a timeout for the web service session when it has
not been used for 24 hours (default).

• Limited BOValue cache on web services sessions to 16 entries

• Close SessionData upon logging out in web service

• Created a SOAP session timeout in System Settings > Web
application TSI.

For more information, see Web application.

Access key
Instead of executing a login SOAP request to create a sessionID and pass that as
parameter to each request, you can also pass an access key.

This makes it possible to directly call SOAP web services by using an access key. It is
then no longer required to call login / logout to fetch and release a sessionID.

• Using an access key could be slightly less efficient than using a sessionID.
• For more information, see Access keys.

SessionID vs Access key

Whenever you want to set up a session using web services, a proper identification needs
to be established.

This can either be done via creating a sessionID or via an access key.

This article describes how to do that for both ways of authentication.

sessionID
When using a sessionID, you need to start by calling the following two endpoints:

• ../nyx/services/PlanonSession.PlanonSessionHttpsSoap11Endpoint/

• ../nyx/services/PlanonSession.PlanonSessionHttpsSoap12Endpoint/

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:per="http://
Person.ws">

 <soap:Header/>

 <soap:Body>

16 SessionID vs Access key

https://webhelp.planoncloud.com/en/index.html#page/System%20Settings/c_Web_Application.html
https://webhelp.planoncloud.com/en/index.html#page/Authorization/t_using_access_keys.html
https://webhelp.planoncloud.com/en/index.html#page/Accounts/t_using_access_keys.html

 <per:login>

 <!--Optional:-->

 <per:args0>[USERNAME]</per:args0>

 <!--Optional:-->

 <per:args1>[PASSWORD]</per:args1>

 </per:login>

 </soap:Body>

</soap:Envelope>

This will return:

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

 <soapenv:Header/>

 <soapenv:Body>

 <ns:loginResponse xmlns:ns="http://Person.ws">

 <ns:return>[SESSIONID]</ns:return>

 </ns:loginResponse>

 </soapenv:Body>

</soapenv:Envelope>

Once you have retrieved the sessionID you can add that to the actual request, in this
case the Read-BOM on the Person business object:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:per="http://
person.Person.ws">

 <soap:Header/>

 <soap:Body>

 <per:read>

 <!--Optional:-->

 <per:args0>[SESSIONID]</per:args0>

 <per:args1>[SYSCODE]</per:args1>

 </per:read>
SessionID vs Access key 17

 </soap:Body>

</soap:Envelope>

When using the sessionID, all requests are performed in the same session. When done,
the session should be properly closed.

Closing session
When using the sessionID, it is good practice to close the session by using the following
request:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:per="http://
Person.ws">

 <soap:Header/>

 <soap:Body>

 <per:logout>

 <!--Optional:-->

 <per:args0>[SESSIONID]</per:args0>

 </per:logout>

 </soap:Body>

</soap:Envelope>

Access key
If you want to use use an access key, simply replace the sessionID in the earlier
request with the access key.

When using an access key, unlike with sessionID, a session is used per request - it is
automatically opened and closed.

Typical web service client operation

P r o c e d u r e
A typical sequence of operations performed by your web service client are:

1. Connect to the PlanonSession web service.

18 Typical web service client operation

2. Log in with a valid user name and password to obtain a session
identifier.

To be able to use Web services, make sure that the appropriate user group is linked to
the PPWS product definition: Web Services. For more information, see product definitions
(Accounts).

3. Connect to the actual web service.
4. Perform operations on this web service.
5. Connect to the PlanonSession web service.
6. Log out from Planon ProCenter.

• It is mandatory to log into the Planon ProCenter framework. It is the only way to obtain
a valid session identifier.
• Each login session to Planon ProCenter via web services must be followed by a logout
when the goal is complete. Doing so will prevent unnecessary memory usage by inactive
web services as the session data will be cleaned up automatically after logout.
• Planon will trigger a session time-out if a web service is inactive for more than 24
hours.

Searching/filtering for instances of business objects
It is possible to search for particular business objects with certain characteristics. For
example, it is possible to look for all persons having a last name of 'Peters', or having the
initials 'J.A'.

For this, a filter class is available, for example, PersonFilter. This class has setter
methods for each field you can filter on. It is possible to filter on multiple fields at the
same time. Searching on multiple fields is always done using ‘in’ and ‘like’ operators. For
example, searching for all persons with initials 'J.A' and last name 'Peters' will only match
the persons with the same initials and the same last name.

The setter methods in your filter class accept two parameters, the first parameter is the
filter-operator to use, and the second parameter is the value to filter on. The following are
the supported filter operators:

Filters on exact matching values

• "equals": the field value should be exactly equal to the filter value.

• "notEquals": the field value should not be equal to the filter value.

• "notEqualsOrEmpty": the field value should not be equal to the filter
value or should be empty.

Filters that contain a value

• "contains": the field value contains the filter value.

• "notContains": the field value does not contain the filter value.

• "containsAValue": the field value contains any value.

Filters that match the beginning of values

Searching/filtering for instances of business objects 19

https://webhelp.planoncloud.com/en/index.html#page/Accounts/r_product_definition_fields.html

• "startsWith": field value should start with the filter value.

• "notStartsWith": field value should not start with the filter value.

Filters that match the end of values

• "endsWith": the field value should end with the filter value.

• "notendsWith": the field value should not end with the filter value.

Filter on values that are strictly greater than a value

• "greater": the field value should be greater than the filter value.

Filter on values that are greater than or equal to a value

• "greaterEqual": the field value should be greater than, or equal to the
filter value.

Filter on values that are strictly less than a value

• "less": the field value should be less than the filter field value.

Filter on values that are less than or equal to a value

• "lessEqual": the field value should be less than or equal to the filter
field value.

Filter on on empty values

• notContainsAValue": the field value is null (empty).

Note that the operators are case-sensitive. For convenience, a Java
class is defined with constants for these operators. This class is called
‘nl.planon.nyx.common.filter.FilterOperator'. It is preferred to use the constants of this
class instead of the strings mentioned above.
However, it is not always possible to use all filter operators on all fields. For example,
filtering on date fields starting with '12' will not work. In this case, an exception will be
thrown to your Web service client.

Filtering on field names
You can use the actual field names while specifying the filtering
criteria.

For example, the ParentRef field on the Property business object in the Web Service
definition.

However, for using this field for filtering, you must first add the field to the layout and put
the field settings, Inselection=true and Simple selection=true in the FieldDefiner TSI.

The following example explains the settings for the ParentRef field:

20 Searching/filtering for instances of business objects

PropertyFilter myFilter = new PropertyFilter();

 FieldFilter[] fieldFilters = new FieldFilter[1];

 fieldFilters[0]= new FieldFilter("","","");

 fieldFilters[0].setFieldName("ParentRef");

 fieldFilters[0].setFilterValue("301");

 fieldFilters[0].setOperator("equals");

 myFilter.setFieldFilters(fieldFilters);

Filtering DisplaytypeRef fields:
You can use the DisplayTypeRef fields in the filtering as explained in the following
example:

Add the IsArchived field to Inselection=true and ensure that it is added in the layout
before you generate the webservices.

 FieldFilter[] fieldFilters = new FieldFilter[2];

 fieldFilters[0]= new FieldFilter();

 fieldFilters[1]= new FieldFilter();

 fieldFilters[0].setFieldName("ParentRef");

 fieldFilters[0].setFilterValue("301");

 fieldFilters[0].setOperator("equals");

 fieldFilters[1].setFieldName("IsArchived");

 fieldFilters[1].setFilterValue("true");

 fieldFilters[1].setOperator("equals");

 myFilter.setFieldFilters(fieldFilters);

Java examples for using filters in webservice client:

// find all persons whose last name ends width “eters”:
PersonFilter filter1 = new PersonFilter();

Searching/filtering for instances of business objects 21

filter1.setFilterLastName(FilterOperator.ENDS_WITH,
 “eters”);

// find all persons whose working address equals
// to the address with primary key (syscode) 25:
PersonFilter filter2 = new PersonFilter();
filter2.setFilterAddressRef(FilterOperator.EQUALS, 25);

// find all addresses whose free field 7 is less or equal to 141:
// (assuming free field 7 represents an integer field)
AddressFilter filter3 = new AddressFilter();
Filter3.setFilterFreeField7(FilterOperator.LESS_EQUAL, 141);

instance.find(final String aSessionId, Filter3);

Java example for using the 'find method' in webservice client

// find all addresses whose free field 7 is less or equal to 141:
// (assuming free field 7 represents an integer field)
AddressFilter filter1 = new AddressFilter();
Filter1.setFilterFreeField7(FilterOperator.LESS_EQUAL, 141);

instance.find(final String aSessionId, filter1);

Handling date and date-time fields

Date fields
The current version of Axis2 cannot properly handle date fields that also contain a
reference to time. Planon therefore recommends to only include the date in date fields.

Incorrect:

<xsd:beginDate>2017-07-24T14:42:14.000+02:00</xsd:beginDate>

Correct:

22 Handling date and date-time fields

<xsd:beginDate>2017-07-24</xsd:beginDate>

Date-time fields
To handle the time zones correctly Property date-time (DateTimeProperty) and Neutral
date-time (DateTimeNeutral) fields values should be handled as string type.

When retrieving, populating or searching on dates, the date-time field should be in one of
following formats:

• EEE MMM dd HH:mm:ss zzz yyyy

• yyyy-MM-dd'T'HH:mm:ss

• yyyy-MM-dd'T'HH:mm:ss.000'Z'

For more information on web services and time zones, see Web services and time zones.

Modification date-time
For the majority of business objects, the SysMutationDateTime field is available and
mandatory within Web Services.

For business objects for which SysMutationDateTime is not available through Web
Service, you can use SysChangeDateTime.

If one or both of these fields are available for a business object, they can be used to find
records based on the modification date-time of a business object record.

Referring to other business objects from a web
service
In many use cases for Web services, references need to be made from one business
object to other business objects. In Planon ProCenter, support is added for reference
fields in Web services.

References to other business objects are in most cases recognizable by the suffix
“Ref” in field names, for example, “AddressRef”. Planon ProCenter has several
representations of references, of which the largest part consists of integer references.
Such an integer always points to the primary key of the referred business object.

For example, if a Person has a reference to working address 25, this actually means that
Person refers to the business object Address with primary key 25.

All business objects in Planon ProCenter have a primary key by which they can be
uniquely identified. When creating a new, unsaved, business object, the primary key

Referring to other business objects from a web service 23

is initially not set. It is assigned as soon as the business object is stored in Planon
ProCenter.

A Java-example showing how to set the working address of a person to a newly created
address is shown here:

// Create a new address
AddressClientStub addressClient = new AddressClientStub();
Address myAddr = addressClient.create(mySessionId);
// fill values of myAddr with relevant data (not shown)
myAddr.setAddress(“my Address”);
// store the newly created address
myAddr = addressClient.save(mySessionId, myAddr);

// Create a new person whose working address is ‘my Address’
PersonClientStub personClient = new PersonClientStub();
Person myPers = personClient.create(mySessionId);
// fill values of person with relevant data (not shown)
// set the working address of this person to the new address
myPers.setAddressRef(myAddr.getPrimaryKey());
myPers = personClient.save(mySessionId, myPers);

If you want to link an existing business object, you need to find it first to obtain its primary
key. It is common practice to not rely on primary keys as constant values in your code.
For example, always search for the address to obtain its primary key, instead of relying
on that its primary key is always 25.

You can create a new business object (dependent business object), which has a
composite relationship with an existing primary business object (whole business object)
using the method “ > create<USERBOTYPE>part”.

To understand more about Composite Business Objects, see Working with Composite
BOs using web services .

Reading and changing the status of a business
object
The getState & setState methods are used to get and set the status of a business
object, that is, these methods set the status transitions of the business objects. These
new methods replace the previous set of methods whereby one method was used for
each status transition. The sample code below shows you how to use the GetState
and SetState methods to check the current status of any business object in Planon
ProCenter.

final UsrMoveOrderClientStub instance = new UsrMoveOrderClientStub();

final String sessionId = instance.login(aArgs[0], aArgs[1]);

// Read the Order using the primary key got

24 Reading and changing the status of a business object

UsrMoveOrder aOrder = instance.read(sessionId,orderId[0]);

//get the current state

instance.getState(final aSessionId, aOrder);

// Set a State

String aTargetState= “UsrTechnicallyCompleted” ;

// UsrTechnicallyCompleted::System name of the target state

instance.setState(sessionId,aOrder,aTargetState);

Status transition for orders based on a standard order

A standard order does not have a status itself, it has a Status field. Consequently, you
cannot apply the getState and setState directly, but you will have to work around it.

For standard orders a getStandardBOUserStatePnName method is available that allows
you to retrieve the standard order user status PnName of the status as set in the
RefBOStateUserDefined field on the standard order.

This PnName can subsequently be used to set the status of an order created via web
services to the desired state of the standard order, using the regular setState method.

Example

1. Create and save a new order.
2. Read all values from the standard order and set those values on the

new order.
3. Read the standard order status using the new method.
4. Use getState on the order to retrieve the current status PnName.
5. Use getStandardBOUserStatePnName on the standard order to get

PnName of desired status.

This method will only be added to web service when the Read action is linked on the
standard order.

6. Use setState (current order status PnName, desired standard order
status PnName).

7. Save the order.

Adding time schedule to Maintenance Activity
Definition in web services

Adding time schedule to Maintenance Activity Definition in web services 25

You can set a schedule for time based Maintenance Activity Definitions through the Web
services client. You can add recurring hourly, daily, weekly, monthly, yearly schedules
using the following methods:

You must add the date in the ‘Tue Nov 09 12:29:45 2010’ format. If not an error message
<faultstring> Unparseable date: "Tuesday Nov 09 12:29:45 2010"</
faultstring> is displayed.

//Hourly Time schedule

void add_timeScheduleIterateHourly(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime, final int aInterval)

//Daily Time schedule

void add_timeScheduleIterateDaily(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime, final int aInterval)

//Monthly Time schedule

void add_timeScheduleIterateMonthly(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime, final int aInterval, final int aDayOfMonth)

//Yearly Time schedule

void add_timeScheduleIterateYearly(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime, final int aInterval)

//Monthly Weekdays Time schedule

void add_timeScheduleIterateMonthlyOnWeekDay(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime,

final int aInterval, final int aOccuranceInMonth,

final boolean aOnMonday, final boolean aOnTuesday, final boolean aOnWednesday,

final boolean aOnThursday, final boolean aOnFriday,

final boolean aOnSaturday, final boolean aOnSunday)

//Weekly Time schedule
26 Adding time schedule to Maintenance Activity Definition in web services

void add_timeScheduleIterateWeekly(final String aSessionId,

final MaintenanceActivityDefinition aPOJO, final Calendar aBeginDateTime,

final Calendar aEndDateTime, final int aInterval, final boolean aOnMonday,

final boolean aOnTuesday, final boolean aOnWednesday,

final boolean aOnThursday,final boolean aOnFriday,

final boolean aOnSaturday, final boolean aOnSunday).

For a description of the parameters used in the methods, refer to Parameters.

Adding person type reference field
In Planon ProCenter, 10 person type references are available. Each person type
reference corresponds to a digit from 0 to 9.You can add a Person type reference field in
the Person BO by using the

setPersonTypeRef(final String aNewValue)method.
final PersonClientStub instance = new PersonClientStub();

final String sessionId = instance.login(aArgs[0], aArgs[1]);

// TODO add your business logic here...

Person person = instance.createPerson(sessionId);

person.setCode("test1");

person.setFacilityNetUsername("test1");

// valid input

person.setPersonTypeRef("1 3 5");

In the above example of setting person type reference as”1 3 5”, empty spaces are
provided between the digits. The empty spaces correspond to the missing digits thus
enabling you to display only the person type references of the digits mentioned here.
That is, if 1, 2 and 3 digits correspond to Coordinator intern, Uitvoerder intern and Melder
person types respectively, according to the above example, only the Coordinator intern
and Melder are displayed while Uitvoerder intern becomes invisible as 2 is represented
by an empty space.

While assigning person type references in the method, if continuous numbers are not used
and if empty spaces are not provided between the digits, incorrect person type reference
fields will be displayed.

Adding person type reference field 27

Working with Composite BOs using web services
Composite Business Objects are those that either have a dependent (part) or a primary
(whole) relationship with another BO.

A primary – dependent relationship is a relationship where the instance of the dependent
business object cannot exist without the existence of an instance of the primary object.

In Planon ProCenter, in Field definer, the Technical information tab for any business
object informs the user if the business object is composite or not.
To create an instance of a BO which is dependent in a composite relationship using web
services in Planon ProCenter, the web services exposes a method to create the instance
of the dependent BO from the instance of the primary BO.

For example, to create a work order which is a dependent in the whole part relationship
with the base order, you must use this method and pass the primary key of the base
order type, the session id and the partBusinessObject instance.

/**

 * Creates a new, unsaved UsrWerkorderalgemeen part instance.

 */

public UsrWerkorderalgemeen createUsrWerkorderalgemeenPart

 (final String aSessionId, final int aBaseOrderPrimaryKey,

 final UsrWerkorderalgemeen aNewPartPOJO)throws AxisFault {

28 Working with Composite BOs using web services

Filtering on Person type

The following is true for the Person type field which supports 'contains' operator:

The field PersonType supports 'contains' operator. User must specify the right 'String'
for the person type. Person Type being a special field, gets stored in the database as
string made of numbers 0,1,2,3,4,5,6,7,8,9 where each digit specifies the selection of the
particular type.
That is, if Type 1 and 3 are selected, '1 3' get stored in database. However. you must
ensure that you specify the same string in the filter parameter.

For example, if you like to search the Person type A and C in the database which will be
stored in a pattern like(1 3), then ABCD will be 1234.
The following example gives you all the person types having person type selected A and
C:

 <xsd:fieldFilters>

 <!--Optional:-->

 <xsd1:fieldName>PersonTypeRef</xsd1:fieldName>

 <!--Optional:-->

 <xsd1:filterValue>1 3</xsd1:filterValue>

 <!--Optional:-->

 <xsd1:operator>contains</xsd1:operator>

 </xsd:fieldFilters>

Filtering on Person type 29

Supported Methods in web services

Web services support the Create, Read, Update, Delete (CRUD) actions.

When a user generates a web service, the <BOName>Service.java file is generated.
This file lists all the methods that are supported by web services for this BO.

The generated methods also depend on the user authorization done on the BO.

The following table lists the methods supported by the web services when a BO is
exported from Planon ProCenter:

Method in WSDL Action in Planon Procenter

Create<BOName>

Example: public Person
createPerson(final StringaSessionId)

BomAdd

create<BOName>Part

Example: public UsrWerkorderalgemeen
createUsrWerkorderalgemeenPart(final
String aSessionId, final int
aBaseOrderPrimaryKey, final
UsrWerkorderalgemeen aNewPartPOJO)

BomAddPart

This method is used to create
a business object which is a
dependent one in a composite
relationship using web services
in Planon ProCenter.

create<BOName>(<parameter set>)

Example: public CommunicationLog
createCommunicationLogWithArguments
(final String aSessionId, final Integer
aSyscode, final String aBOType)

Example: public UsrReservering
createUsrReserveringWithArguments
(final String aSessionId, final
Date aBeginDateTime, final Date
aEndDateTime, final Integer
aReservationUnitRef, final Integer
aPersonCount, final Integer
aDeskConfigurationRef)

BomAdd

You can also use the create
methods, with Arguments.

Only the BOs that require
parameters passed as part of
the create (ADD BOM) must use
Create method(With Arguments).
If the parameters are not passed
correctly while executing this
method, an error message
occurs and the system shuts
down.

30 Supported Methods in web services

Method in WSDL Action in Planon Procenter

Return type: Object.

Input parameters: String SessionId,
Integer aSyscode, String aBOType

Read

Example: public Person read(final String
aSessionId, final int aPrimaryKey)

BomRead

Save

Example: public Person save(final String
aSessionId, final Person aPOJO)

BomSave

Delete

Example:public Boolean delete(final
String aSessionId, final int aPrimaryKey)

BomDelete

Find

Example: public int[] find(final String
aSessionId, final PersonFilter aFilter)

Quick search in Planon
ProCenter.

For more information, see
Java example for using the 'find
method' in webservice client

getState

Example: public String getState(final
String aSessionId, final Person aPOJO)

Gets the current state

setState

Example: public Person setState(final
String aSessionId, final Person aPOJO,
final String aTargetState)

Sets the status of an instance of
business object from its current
state to its target state. It can
set system statuses as well as
user statuses depending on the
business object type.

connectTo<Business Object>
Creates M-to-N relationships
between two business objects.

Supported Methods in web services 31

Method in WSDL Action in Planon Procenter

Return type: void

Input parameters: Session ID,
BOPrimaryKey, BOPrimaryKeyN.

disconnectFrom<Business Object>

Return type: void

Input parameters: Session ID,
BOPrimaryKey, BOPrimaryKeyN.

Disconnects M-to-N relationships
between two business objects.

connectToBom<Link.SystemName>

Example: public Boolean
connectToUsrSkills6897(final String
aSessionId, final int aPrimaryKey, final int
aPrimaryKeyN)

Marks all the M-to-N link actions
for a business object.

The Link.SystemName is
mentioned in the business
object's Links tab in Layouts
TSI.

disconnectfromBom<Link.System-
Name>

Example: public Boolean
DisconnectFromUsrSkills6897(final String
aSessionId, final int aPrimaryKey, final int
aPrimaryKeyN)

Unlinks the M-to-N actions on a
business object.

setSessionDataSection

Return type: Boolean.

Input parameters: String SessionId, String
DataSection.

Changes the property set for a
user through web services.

setReferenceDate

Return type: Boolean

Input parameters: String SessionId ,
java.util.Calendar.

Sets the reference date of a
reference date aware business
object. This method is available
on PlanonSessionService.java.

32 Supported Methods in web services

Method in WSDL Action in Planon Procenter

logout

Return type: Boolean

Input parameters: String SessionId

Logs out a Planon session.

createSubInventoryItem

Return type: InventoryItem.

Input parameters: String SessionId,
Object InventoryItem.

Creates a sub-asset on the asset
indicated by the parameter.

archive

Example: public Boolean archive(final
String aSessionId, final int aPrimaryKey)

Archives a business object.

dearchive

Example: public Boolean dearchive(final
String aSessionId, final int aPrimaryKey)

Dearchives a business object.

addTimeAwareMToN
Additional method that only applies
to business objects with time-aware
M:n links in Service Providers solution
mode!

Adds a time-aware M:n record
(link to another business object).

endTimeAwareMToN
Additional method that only applies
to business objects with time-aware
M:n links in Service Providers solution
mode!

Sets an end date for a time-
aware M:n record (link to another
business object).

BaseOrder BO has Save and Delete methods.

Supported Methods in web services 33

Web services and time zones

When time zones are not enabled, any date-time entered with a web service is
processed as if the date-time is entered in the time zone of the web server. Any time
zone specified in the input date-time field is stripped/ignored.

When times zones are enabled, any date-time entered with a web service is processed
in the time zone of the logged in user (the time zone that is registered for that user in
Planon). Any time zones specified in the input date-time field are stripped/ignored. The
web/application server time zone is irrelevant, the database time zone, as specified
in Planon System Settings, is used to determine how the values are stored in the
database.

Examples

There are three different date-time types:

• Property date-time

• Transaction date-time

• Neutral date-time

Type Base Value Time Zone

Property Integer Property

Transaction Date System

Neutral Integer Not specified

Configuration

Time Zone Location Acronym Offset

Property USA / New
York

EST UTC -05
(UTC -04
with DST)

User 1 Pacific/Tahiti TAHT UTC -10

User 2 London UTC UTC + 0

Legend:

• EST: Eastern Standard Time

• TAHT: Tahiti Standard Time

• UTC: Coordinated Universal Time

34 Web services and time zones

• DST: Daylight Saving Time

Property date-time
• Property is in the EST time zone.

• User 1 is used to log in with web services, to create the data and then
check the user interface for the result.

• User 2 is used to read the data (in the user interface / web services).

The date is always returned in the property time zone (-04 is property time zone USA/
New York)

.

Web service input user 1 2015-10-21T10:00:00

Web service reply to user 1 2015-10-21T 10:00:00.000 -04:00
(the date is returned in the property’s
time zone)

User interface displays to user 1 and
user 2

2015-10-21 10:00:00.000

In the user interface, the property date-time is always the same.

Transaction date-time

Transaction date-time 35

Date is exported in time zone of the user (-10 is user time zone TAHT).

Web service input user 1 2015-10-21T10:00:00

Web service reply to user 1 2015-10-21T10:00:00.000 -10:00 (the
date is returned in the user’s time
zone)

User interface displays to user 1 2015-10-21 10:00:00

User interface displays to user 2 2015-10-21 20:00:00

Neutral date-time
The date is exported with the time zone of the user.

The time is always the same, the time zone is different (based on the user time zone).

36 Neutral date-time

Web service input user 1 2015-10-21T10:00:00

Web service reply user 1 2015-10-21T10:00:00.000 -10:00
(The date is returned in the user’s
time zone)

User interface displays to user 1 and
user 2

2015-10-21 10:00

Neutral date-time 37

BO types and their methods

The table below lists some examples of Business objects for specific BO types with their
typical methods:

BOType connectTo create createPart delete getState

Method

System BO without subtypes without states

Department Y Y Y Y -

PSSActivityInventory-
ItemSubject

Y Y - Y -

System BO with states without subtypes

Visitor Y Y Y Y Y

System BO with subtypes without states

BasePSSActivitySubject Y - - Y -

System BO with userDefined subtype with states

Person Y Y - Y Y

TransactionPlan Y Y Y Y Y

UsrProject Y Y Y Y Y

InventoryItem Y Y Y Y Y

UserDefined BO with states

UsrPerson Y Y - Y Y

UsrInventoryItem Y Y Y Y Y

BaseType BO

Teams - - - Y -

38 BO types and their methods

BOType connectTo create createPart delete getState

System BO that is subtype of a BaseType BO and no userDefined subtypes

ProjectTeams Y Y Y Y Y

System BO with states with subtypes

BaseProjects - - - Y Y

System BO that is subtype of a BaseType BO with userDefined subtypes

Project - Y Y Y Y

Orders

BaseOrder

BaseOrder - - - Y -

System BO that is subtype of a BaseOrder

WorkOrder - - - Y Y

UserDefined BO that is subtype of a subOrder

UsrWerkorder
algemeen

Y Y Y Y Y

BOType read save setState setState-
<ToState>

Disconnect
-

From

Method

System BO without subtypes without states

Department Y Y - - Y

PSSActivityInventory-

ItemSubject

Y Y - - Y

System BO with states without subtypes

BO types and their methods 39

BOType read save setState setState-
<ToState>

Disconnect
-

From

Visitor Y Y Y - v

System BO with subtypes without states

BasePSSActivity-

Subject

Y Y - - -

System BO with userDefined subtype with states

Person Y Y Y - Y

TransactionPlan Y Y Y D Y

UsrProject Y Y Y - Y

InventoryItem Y Y Y D Y

UserDefined BO with states

UsrPerson Y Y Y - Y

UsrInventoryItem Y Y Y - Y

BaseType BO

Teams v - - - -

System BO that is subtype of a BaseType BO and no userDefined subtypes

ProjectTeams Y Y Y - Y

System BO with states with subtypes

BaseProjects Y Y - - -

System BO that is subtype of a BaseType BO with userDefined subtypes

Project Y Y Y - -

Orders

40 BO types and their methods

BOType read save setState setState-
<ToState>

Disconnect
-

From

BaseOrder

BaseOrder Y Y - - -

System BO that is subtype of a BaseOrder

WorkOrder Y Y - - -

UserDefined BO that is subtype of a subOrder

UsrWerkorder
algemeen

Y Y Y - Y

Method Parameter Explanation
The following list provides an overview and description of the available parameters that
can be used.

Parameter Description

aSessionId Indicates the session id for the logged in user
session.

MaintenanceActivityDefinition Provides an instance of a Maintenance
Activity Definition.

aBeginDateTime Begin date & time of the schedule. This
parameter also accepts ‘null’ as value.

aEndDateTime End date & time of the schedule. This
parameter also accepts ‘null’ as value.

aInterval Indicates the number of times the scheduler is
called during the schedules.

aDayOfMonth Indicates the day in a month when the
scheduler should be executed.

aOccuranceInMonth Indicates the occurrences in a month.

aOnMonday This value should be true if you want to
schedule the occurrence on a Monday.

Method Parameter Explanation 41

Parameter Description

aOnTuesday This value should be true if you want to
schedule the occurrence on a Tuesday.

aOnWednesday This value should be true if you want to
schedule the occurrence on a Wednesday.

aOnThursday This value should be true if you want to
schedule the occurrence on a Thursday.

aOnFriday This value should be true if you want to
schedule the occurrence on a Friday.

aOnSaturday This value should be true if you want to
schedule the occurrence on a Saturday.

42 Method Parameter Explanation

Frequently asked questions

Q: The Web server complains about not being able to find the class ‘nl/planon/util/
pnlogging/PnLogger.class' or ‘nl/planon/hades/valueobject/IBOValue.class'.

A: Make sure the Axis2 directory in ...\Server\tomcat-*\webapps is removed prior to
deploying a new Axis2.war file. If you do not do this, your updated WAR-file will not be
redeployed and thus your changes are not visible.

Q: I'm working with Axis2 and Java, but my Web service crashes without much
information. How can I get more debug information?

A: Update the ‘log4j.properties' in your Axis2 installation directory. Replace the line
"log4j.rootCategory = INFO, CONSOLE" with "log4j.rootCategory = DEBUG, CONSOLE"
an restart your client to see verbose information about what it is doing.

Q: I try to run my Axis2, but it keeps complaining about classes not being found! What
should I do?

A: If you want to run your Java Web service client using Axis2, you need to add (almost)
all Axis2 JAR-files to the classpath. For your convenience, you can use the following
batch-file:

-- snip --

@echo off

set AXIS2_HOME=c:\path\to\axis2

set JAVA_HOME=c:\path\to\java

set WS_CLIENT_JAR=c:\path\to\myclient.jar

set WS_MAIN_CLASS=nl.test.ws.MyClient

setlocal EnableDelayedExpansion

%JAVA_HOME%\bin\java" -cp "%WS_CLIENT_JAR%;%AXIS2_HOME%*"
 %WS_MAIN_CLASS% %1 %2

-- snip --

Save the above snippet into a file ending with the `.bat' extension, for example, ‘run.bat',
and adjust the first three set-commands to your situation. Note that lines ending with ‘#’
are continued on the following line, and should result in a single line in your batch file;

Q: I want to make Web service calls from a client, how should I do this?

Frequently asked questions 43

A: Take a look at the sample code generated; you can use the Stub-named class directly
to talk to your Web service. You do not need to instantiate the Service-classes yourself!
This is done by the Web service container, and should not be done at the client.

44 Frequently asked questions

References

• Apache Axis2 -

• Java JDK -

• Apache Axis2 Web administration guide -

• Apache ANT -

References 45

Index

Index
A

Access keys 15
Adding a Web Service definition 7
Adding Person type reference field 27
Adding time schedule to Maintenance
Activity Definition 25

C
Changing the status of a business
object 24
Communication

Access key 16
Session ID 16

Compiling a web service 12
Creating a web service 7

D
Date changes 23
Date fields

Axis2 error 22
format 22

Date-time fields
format 22

Deploying a web service 12
Developing a Web service client 15

F
Filtering for instances of business
objects 19
Frequently asked questions 43

G
Generating a web service 11
Generating, compiling and deploying a
web service 10
getStandardBOUserStatePnName
method 25

L
Linking actions to a web service BO
definition 10
Linking business object definitions to a
web service definition 7
Linking field definitions to a web service
BO definition 8

M
Method parameter explanantion 41

R
Reading the status of a business object
24
Referring to other business objects 23
Resources 15

S
sandard order 25
Searching for instances of business
objects 19
Service Oriented Architecture 6
Session management 15
sessionID 15
SOA 6
Supported field types 8
Supported fields 8
Supported Methods 30
SysChangeDateTime 23
SysMutationDateTime 23
System fields 8

T
Time zone: neutral date-time 36
Time zone: property date-time 35
Time zone: transaction date-time 35
Time zone: web services 34, 35, 35, 36
Typical web service client operation 18

V
Verifying the Deployed web Services 13

W
Web services 6

time zones 22
Working with Composite BOs 28

46 - Index

	Table of Contents
	Web services
	Creating a web service
	Adding a web service definition
	Linking business object definitions to a web service definition
	Linking field definitions to a web service BO definition
	Supported fields

	Linking actions to a web service BO definition
	Generating, compiling and deploying a web service
	Generating a web service
	Compiling a web service
	Deploying a web service

	Verifying the deployed web services
	Configuring axis2.xml

	Developing a Web service client
	Session management
	SessionID vs Access key

	Typical web service client operation
	Searching/filtering for instances of business objects
	Handling date and date-time fields
	Modification date-time
	Referring to other business objects from a web service
	Reading and changing the status of a business object
	Status transition for orders based on a standard order

	Adding time schedule to Maintenance Activity Definition in web services
	Adding person type reference field
	Working with Composite BOs using web services

	Filtering on Person type
	Supported Methods in web services
	Web services and time zones
	Property date-time
	Transaction date-time
	Neutral date-time

	BO types and their methods
	Method Parameter Explanation

	Frequently asked questions
	References
	Index

