
REST API

Planon Software Suite
Version: L105

© 1997 - 2024 Planon. All rights reserved.
Planon and the Planon logo are registered trademarks of Planon Software Development B.V. or its affiliates. All
other product and company names mentioned herein are trademarks or registered trademarks of their respective
companies. Planon Software Development B.V., its affiliates and/or licensors own the copyright to all Planon
software and its associated data files and user manuals.
Although every effort has been made to ensure this document and the Planon software are accurate, complete
and up to date at the time of writing, Planon Software Development B.V. does not accept liability for the
consequences of any misinterpretations, errors or omissions.
A customer is authorized to use the Planon software and its associated data files and user manuals within the
terms and conditions of the license agreement between customer and the respective legal Planon entity as soon
as the respective Planon entity has received due payment for the software license.
Planon Software Development B.V. strictly prohibits the copying of its software, data files, user manuals and
training material. However, customers are authorized to make a back-up copy of the original CD-ROMs supplied,
which can then be used in the event of data loss or corruption.
No part of this document may be reproduced in any form for any purpose (including photocopying, copying onto
microfilm, or storing in any medium by electronic means) without the prior written permission of Planon Software
Development B.V. No copies of this document may be published, distributed, or made available to third parties,
whether by paper, electronic or other means without Planon Software Development B.V.'s prior written permission.

About this Document

Intended Audience
This document is intended for Planon Software Suite users.

Contacting us
If you have any comments or questions regarding this document, please send them to:
support@planonsoftware.com.

Document Conventions
Bold
Names of menus, options, tabs, fields and buttons are displayed in bold type.

Italic text
Application names are displayed in italics.

CAPITALS
Names of keys are displayed in upper case.

Special symbols

Text preceded by this symbol references additional information or
a tip.

Text preceded by this symbol is intended to alert users about
consequences if they carry out a particular action in Planon.

mailto:support@planonsoftware.com
mailto:support@planonsoftware.com

Table of Contents

Table of Contents

Introduction to REST API.. 7

About REST API in general.. 7

Principles of REST API...7

REST API Methods...8

About the Planon REST API...8

Prerequisites...10

License...10

Navigation panel.. 10

Security.. 11

User access... 11

Basic features.. 12

User interface.. 12

Definitions level... 12

Field definitions level...13

License usage level...14

Which BOs and Fields can be used in REST API calls?..15

BOs that are allowed to be used..16

Fields that are allowed to be used... 16

Creating definitions.. 16

Single level definition.. 16

Multi-level definition...17

Using definitions.. 19

Generate and import an OpenAPI document... 19

Creating a sample request..20

OpenAPI document... 23

OPENAPI property.. 23

4 - Table of Contents

Table of Contents

INFO object... 23

SERVERS object...24

SECURITY object..25

PATHS object..25

Examples of endpoints.. 26

Create.. 27

Read.. 30

Lookup... 30

Update... 31

Delete...33

ChangeState..35

Retrieve / Download file.. 36

Attach / Upload file..38

Detailed information on the body of the request...40

Filters in the body... 40

Values in the body.. 42

Answers in the body... 43

Dealing with warnings...43

Dealing with confirmations..44

Arguments in the body..46

Advanced features... 48

File handling.. 48

Remove file... 48

Attributes on Assets.. 49

Attaching an attribute set.. 50

Detaching an attribute set...51

Setting attribute values..51

Reading attribute values... 53

Table of Contents - 5

Table of Contents

Removing attribute values...53

Batch processing... 54

Request header... 59

Endpoint patterns...62

Read endpoint... 62

Update endpoint.. 63

Delete endpoint..65

Execute endpoint... 66

Lookup endpoint.. 67

ChangeState endpoint... 68

OpenAPI endpoint... 69

Batch endpoint...73

Download endpoint.. 75

Upload endpoint...76

Index...78

6 - Table of Contents

Introduction to REST API

REST was chosen as an interface to expose Planon data to other external applications
for several reasons. The goal is to offer an Enterprise Application Integration solution to
enable integration with external applications.

So, firstly, the solution needs to be:

• An industry standard.

• Secure, light-weight, scalable.

• Able to handle large amounts of data.

• Also, it should not be necessary for customers to implement custom
Planon plugins (PaaP Apps) to solve integrations problems.

Security is handled through the standard Planon authentication and authorization
functionality. In addition, only Business Objects and fields are exposed that are
configured to be exposed in the REST API. As a result, for security reasons, the REST
API is not supported on un-authorizable business objects.

About REST API in general
REST is a software architectural style that describes a uniform interface between
physically separate components.

The acronym stands for: REpresentational State Transfer.

Principles of REST API

There are six basic principles of REST.

1. Stateless

The requests sent from a client to a server will contain all
the required information to make the server understand
the requests sent from the client. This can be either a part
of URL, query-string parameters, body, or even headers.
The URL is used to uniquely identify the resource and the
body holds the state of the requesting resource. Once the
server processes the request, a response is sent to the
client through body, status, or headers.

2. Client-server

The client-server architecture enables a uniform interface
and separates clients from the servers. This enhances the

Principles of REST API 7

portability across multiple platforms as well as the scalability
of the server components.

3. Uniform Interface

To obtain the uniformity throughout the application, REST
has the following four interface constraints:

◦ Resource identification

◦ Resource Manipulation using representations

◦ Self-descriptive messages

◦ Hypermedia as the engine of application state

4. Cacheable

In order to enhance performance, applications are often
made cacheable. This is done by labeling the response from
the server as cacheable or non-cacheable either implicitly
or explicitly. If the response is defined as cacheable, then
the client cache can reuse the response data for equivalent
responses in the future.

5. Layered system

The layered system architecture allows an application to be
more stable by limiting component behavior. This type of
architecture helps in enhancing the application’s security as
components in each layer cannot interact beyond the next
immediate layer they are in. Also, it enables load balancing
and provides shared caches for promoting scalability.

6. Code on demand

This is an optional constraint and which is used the least. It permits a clients code or
applets to be downloaded and to be used within the application. In essence, it simplifies
the clients by creating a smart application that does not rely on its own code structure.

REST API Methods

The REST API makes use of the HTTP methods (via a secure connection):

• POST for creating a resource

• GET for retrieving information about a resource

• PUT for updating a resource

• DELETE for deleting a resource

About the Planon REST API

8 About the Planon REST API

The Planon application supports REST API, but what does that mean? It allows you
to create an interface that is best suited for machine-to-machine communication. The
difference between these protocols is that REST API is much more efficient and requires
fewer calls to the application.

The Planon REST API only makes use of the POST method. In addition, it uses
parameters for the four CRUD operations: Create, Retrieve, Update, and Delete.

The Planon REST API is designed with system-to-system communication in mind.

With the Planon REST API, a user can define the response for an API request based on
a Planon business object (BO).

All operations on BOs are triggered by so-called Business Object Methods (BOMs).
These BOMs are there to manipulate the BO they belong to. The Planon REST API
supports this.

The Planon REST API has three generic endpoints:

• /execute - used for executing BOMs

• /lookup - the standard Planon Lookup functionality

• /changeState - for doing state changes on a BO

To keep more in line with a standard REST API we also created three endpoints for
Read, Update and Delete, which are in fact redirects to the /execute endpoint.

• /read

• /update

• /delete

• /upload

• /download

Because there are various Add BOMs in all Planon BOs, it was decided not to create a /
create endpoint to avoid confusion. If creates are allowed for a BOM, these can be found
in the list of methods to execute.

More about endpoints and examples can be found under: Endpoints.

About the Planon REST API 9

Prerequisites

To be able to use and work with the REST API, you need to:

• Have a license for it.

• Add the TSI to the navigation panel.

• Arrange security.

• Enable user access.

The following sections describe these in more detail.

License
The Planon REST API license and the Planon REST API data usage licenses are
needed to be able to work with Planon’s REST API.

Cloud vs. On-Premise
Cloud
Since we incur third-party costs for data transfer, Planon Cloud customers who use
Planon REST API will be charged for this.

The amount of MBs of all responses is aggregated and stored every 15 minutes. This will
be done until no more MBs are left in the license. You can configure alerts to notify if a
certain amount of data is consumed or if a threshold is approaching.

Your usage statistics can be found on the License usage level of the REST API TSI.

On-Premise
Since On-Premise customers do not have any data usage, they will be charged for the
connector itself.

Navigation panel
If the REST API has not been added to the GUI yet, you can do that yourself.

1. Go to Web client > Navigation panel and add the REST API TSI to
your navigation panel. The recommended place to add it, is in the Tools
navigation group. This step is only required once.

2. Log out & log in.

10 Navigation panel

The REST API can now be configured.

Security
An access key is needed to access the REST API from outside the Planon application.
But access keys can only be generated if the Planon software allows us to do that.

Procedure to allow generation of access keys:

1. In the navigation panel, go to System settings > Security.
2. Click the Key pairs tab
3. The setting Access key generated? should have value Yes.

If it has value No, click on Generate key pair in the action panel. That should change it
to Yes.

If the setting Access key generated? was already set to Yes and the action is triggered
anyways, all existing access keys become invalid.

User access
If a Planon user needs access to the REST API from inside the Planon application, they
should be granted REST API authorization by adding them to the user group that holds
that authorization. This user group should have access to the navigation group in which
the REST API TSI is in (for example Tools).

If a Planon user needs access to the REST API from outside Planon, an Access key
should be created for them, and the user group they are in should have a Function
profile that meets the user’s needs (for example ‘Read’).

Procedure to create an access key for a Planon user:

1. In the navigation panel, go to Accounts > User groups
2. Go to the User groups > Users and select the user for which the

access key should be created
3. Go to the Settings > Access keys
4. Click Add
5. Enter a Name and an Expiry date-time for the access key.
6. Click Save. The access key will be generated.
7. The access key can be copied from the Access key field to be used in

the calling application.
8. Log out & log in to activate all changes.

User access 11

Basic features

This section describes the user interface of the REST API TSI and its levels and steps.

User interface
Open the REST API TSI.

You can easily find a TSI by using the Search box in the upper left corner.

The REST API TSI has three levels:

• Definitions – to maintain the REST API definitions

• Field definitions – to maintain the fields of a REST API definition

• License usage – to monitor the hits and MBs that have been used so
far

The action panel shows the actions related to the selection level that is active.

Definitions level

A REST API definition is always based on exactly one BO. Definitions can be
interrelated.

The moment a REST API Definition has been created and saved, fields can be added to
or removed from it, through Link field definitions on the action panel.

Initially, a definition has status Edit. All actions are allowed then.

When the definition is ready for use, it can be given status Published. Deleting it and
editing it is not possible any more then.

The moment a definition should be taken out of service, it can be given status
Unpublished. If that is meant to be permanent, the unpublished definition can also be
deleted. If it was a temporary action, the definition can be given status Published again
later.

A definition can always be created or copied but can only be updated or deleted when
it does not have that status Published. When a definition is Unpublished, only the name

12 Definitions level

(Configuration ID) and Comment field can be changed. When the definition still has
status Edit, everything can be changed.

Field Description

Business object definition Select the BO based on which the
endpoint should be created. This
selection can be done only once.

Configuration ID The value in this field is automatically
generated based on the selected BO
earlier. It can be updated as long as
the definition does not have status
Published.

The application does not accept a
duplicate configuration ID.

System status Displays the API definition's status.

Initially its status is set to Edit.
By clicking the available status
transitions in the action panel, the
definition can be set to Published and
Unpublished.

Comment In this text field, you can enter notes
related to the endpoint definition. This
field can be edited at any time.

When a Published definition needs to be updated, that can be done by making a copy
and editing the duplicate definition. The original definition can be Unpublished and
renamed. Then, the new definition can be given the old name and can be Published.
Better is to use version numbers on the different versions of your REST API definitions to
prevent connected software to fail as a result of updates in the definition.

A group of REST API definitions can be given a specific status all at the same time, by
using the Action on selection feature. Same goes for the Delete action.

You can export one or more REST API definitions, which will result in a zip file that can
be saved on your own network. Such an export file can also be imported again. Export/
import is one of the ways to transport REST API definitions between environments.

You can also transport REST API definitions through Configuration Transfer.

Field definitions level

Individual fields can be removed from a definition with the Delete action as long as the
Definition is in Edit mode. This is not allowed any more after the Definition has been
published.

Field definitions level 13

https://webhelp.planoncloud.com/en/index.html#page/Configuration%20Transfer/c_About_Configuration_transfer_.html

The General tab of a field definition holds information of the linked BO definition, the
audit information, and everything else there is to know about it. If this field is defined as a
foreign key in the database, also a reference can be set to the BO definition, which then
holds the respective primary key. An example of how to define such a reference can be
found in the section Multi-level definition.

Field Description

System code Displays the system code of the
selected field.

REST API configuration ID Displays the configuration ID of the
selected field.

Business object field definition Displays the name of the selected
field.

Reference as For reference fields only, indicate
whether this field should act as a
reference to another business object
definition or not:

• PRIMARYKEY
(no reference)

• RESTAPIDEFINITION
(active
reference)

• LOOKUP

When using LOOKUP,
it is possible to return a
description instead of a
code.

Reference to REST API definition For a reference field - which is
a reference to another BO - that
business object definition has to be
selected here.

License usage level

There are three selection steps on this level:

• Hits/MBs today
Shows the amount of MBs that has been returned to the requester today

• Daily summary
Shows the history of the amount MBs that has been returned to the requester over time

• Total license usage

14 License usage level

Shows the max usage & total usage, and whether the threshold & max hit counts have
been reached or not

License information is updated every 15 minutes.

You can retrieve detailed information about daily usage by clicking the respective line in
the list:

The Total license usage step also shows the license limits and thresholds:

Which BOs and Fields can be used in REST API
calls?

Which BOs and Fields can be used in REST API calls? 15

Not all BOs and not all fields are available for the REST API. This section lists the rules
around these selections.

BOs that are allowed to be used

In general, only BOs that are authorizable, can be exposed through the REST API. There
are, of course, a few exceptions.

System BOs are BOs that Planon uses to manage the software. These BOs contain no
customer data and are, therefore, not exposed through the REST API.

In addition, deprecated BOs are also not exposed.

Fields that are allowed to be used

The value of the field should be In database. We do not expose calculated fields. Also,
the field should be In use and In selection. You can find these settings in Field definer.
Fields that hold passwords and a date-time period are not exposed.

There are more detailed rules on where exactly fields can be used in the body of the
request.

For example, if a field is read-only, you cannot use it in the Values section, where the
to-be-updated values are listed. More about this can be found in the section on the
OpenAPI document.

Creating definitions
While creating definitions, we distinguish between Single level definitions and Multi-level
definitions.

Single level definition

As already mentioned, REST API definitions can be linked to each other or not. This
section explains how to create a not-linked single-level definition.

Procedure to create a REST API definition:

1. Open the REST API TSI.
2. Click the Definitions level.
3. Click Add in the Action panel.

On the General tab:
a. select a Business object definition (for example UsrReservationMeetingRoom).
b. optional: edit the Configuration ID.
c. optional: enter a Comment.

16 Single level definition

d. Click Save.
4. Click Link field definitions in the Action panel.

A dialog box appears, in which fields can be selected by
moving them from Available to In use.

a. Make sure that there is at least one field in In use. (A REST API definition without fields is
pointless and cannot be published).

b. Click OK.
5. Click the Field definitions level.

The fields that you linked in the previous step are listed here.
If required, we can remove individual fields from the
definition by selecting them and clicking the Delete action in
the Action panel.

6. Navigate back to the Definitions level.
7. Click Published in the Action panel.

This REST API definition is now available through its endpoints and, except for the
Comment field, can no longer be updated.

Multi-level definition

It is also possible to link BOs. For example, linking a Person to the Department where
this person works, so that this data can later be retrieved in one call.

In order to make this work, create two single-level definitions as explained in the previous
section (create a definition for Person and one for Department). Add all field definitions.

Multi-level definition 17

These two definitions should be connected: a Person works for a Department.
To create this connection:

1. On Definitions level: click the Person definition
2. On Field definitions level: click the DepartmentRef field

This field will become the connection to the Department
definition

3. On the General tab, this field initially is referenced as a PRIMARYKEY.
Change that setting to RESTAPIDEFINITION.

4. An additional setting becomes available for the DepartmentRef field.
Click the selection icon. Notice that the Reference to REST API
definition pop-up does not show any available definitions:

That is, because only definitions that have status Published or
Unpublished are listed here.

5. So, the Department definition needs to be published or unpublished to
appear in this list. Please do so.

6. Now, the REST API definition DepartmentRef refers to, can be
selected. In our case, this is Department:

18 Multi-level definition

7. Click Save
8. Publish both definitions

Remarks:

• You can create as many connections as are necessary.

• Reference fields can be recognized by their name: they usually end
with Ref.

• You can also create a chain of connections. For example:

◦ an OrderLine is linked to an Order
◦ an Order is linked to a Customer
◦ a Customer is linked to an AccountManager (which is a Person)

Note that, for performance reasons, the response of a REST API call only contains the
data of one additional level. Deeper levels are ignored.

Using definitions
In order to verify whether the REST API definitions are defined correctly, an application
such as Postman can be used, which enables you to create and send API requests.

To do this, a few steps need to be taken:

• Generate OpenAPI documents for your REST API definitions

• Import these OpenAPI documents in a tool such as Postman.

• Create new requests in -for example- Postman

• Send your requests to Planon and verify whether the results are as
expected

Generate and import an OpenAPI document

Generate and import an OpenAPI document 19

https://www.postman.com/
https://www.postman.com/

For each REST API definition, an OpenAPI document is available. This document
contains information how to use the endpoints for this specific definition and can be
downloaded from:

{domain}/sdk/system/rest/v2/openapi/{configuration ID}.json

OpenAPI documents can only be created from REST API definitions that have status
Published. If they are not Published, they cannot yet receive API requests.

Steps to generate an OpenAPI document:

• Suppose the Planon software can be accessed with this url: https://
xxxxx.plnd.cloud/home/BP/WebClient?21

• And suppose we have published the REST API definition ‘Department’

• Then, the OpenAPI document of the Department definition can be
accessed through https://xxxxx.plnd.cloud/sdk/system/rest/v2/openapi/
Department.json

• Save this JSON document on your network

• Import this JSON document in the tool that you will use for sending
API requests

Further explanation of the OpenAPI document can be found in section OpenAPI
document.

Creating a sample request

For this example, REST API definitions for the Person and Department BOs should have
been created and published. The OpenAPI documents should have been imported in –
for example – Postman. If that has not yet been done, go back to Multi-level definitions
and follow the steps from there.

In this sample request, we are looking for a person named John who works for us.

For this request, the /read endpoint should be used.

You can filter on FirstName is John, and EndDate is not filled in.

The complete request then looks like this:

{

 "filter": {

 "FirstName": {

 "eq": "John"

 },

 "EndDate": {

 "exists": false

20 Creating a sample request

https://xxxxx.plnd.cloud/home/BP/WebClient?21
https://xxxxx.plnd.cloud/home/BP/WebClient?21
https://xxxxx.plnd.cloud/sdk/system/rest/v1/openapi/Department.json
https://xxxxx.plnd.cloud/sdk/system/rest/v1/openapi/Department.json

 }

 }

}

The answer we receive might contain quite a number of people that have ‘John’ as their
first name. The response will resemble this:

{

 "records": [

 {

 "Code": "422",

 "DepartmentRef": {

 "Code": "04",

 "CompositeCode": "04",

 "IsArchived": false,

 "Name": "ICT",

 "SysAccountRef": 1,

 "Syscode": 10,

 "SysMutationDateTime": "2020-09-10T00:04:14+01:00",

 "SysUpdateCount": 0

 },

 "Email": "John.Servicedesk@planon.co.uk",

 "FirstName": "John",

 "FTEFactor": 1,

 "IsAnonymized": false,

 "IsArchived": false,

 "LastName": "Servicedesk",

 "MutationDate": "2020-09-09",

 "PhoneNumber": "+44 (0) 2075016123",

 "PropertyRef": 3,

 "Syscode": 149,

Creating a sample request 21

 "SysInsertDateTime": "2020-09-10T00:06:39+01:00",

 "SysMutationDateTime": "2020-09-10T00:32:42+01:00",

 "SysUpdateCount": 2

 },

 {...<data for another person>...

 },

...

 {...<data for another person>...

 }

]

}

If you know the department John works for, you can reduce the number of results.

John works for ICT. As the Person and Department definitions are linked, a nested
search can be done. In nested searches, the syscode has to be used as the search
value. The syscode of the ICT department is 10, so the requests can now we refined into:

{

 "filter": {

 "FirstName": {

 "eq": "John"

 },

 "EndDate" : {

 "exists": false

 },

 "DepartmentRef" : {

 "eq": "10"

 }

 }

}

22 Creating a sample request

This query will reduce the results so that John can more easily be found.

More examples can be found in the section Sample usage of the endpoints.

OpenAPI document
To properly document an API, a number of standards are available. Among those, the
OpenAPI standard is the most well-known. That is why this standard has been chosen to
document the REST API.

The OpenAPI document can be used in tools such as Postman or Swagger, and is
intended for developers to get a better understanding of the workings of the Planon
Generic REST API.

Our OpenAPI document consists of the following sections:

• "openapi" section shows the openapi version

• "info" section provides metadata about the API

• "servers" section shows the server where the API is running

• "security" section contains the required security scheme to execute
the operations

• "paths" section shows the relative paths to the endpoints and their
operations

• "components" section holds a set of reusable objects for various
aspects of the OpenAPI Specification

OPENAPI property

This string must be the semantic version number of the OpenAPI Specification version
that the OpenAPI document uses, in our case this version is 3.0.1, and is mandatory.

"openapi": "3.0.1",

INFO object

This object provides metadata about the API. The metadata may be used if required and
may be presented in editing or documentation generation tools for convenience.

For example:

"info": {

 "title": "Documentation for use of the Planon Generic REST API person definition",

INFO object 23

https://www.postman.com/
https://swagger.io/

 "description": "This document describes how to use the Planon Generic REST API person
 definition. To use this interface you have to create an api key in the Planon application.",

 "contact": {

 "name": "Market leading Real Estate and Facility Management software",

 "url": "https://planonsoftware.com",

 "email": "info@planonsoftware.com"

 },

 "license": {

 "name": "License with product code E00910 is needed to use the Planon Generic REST
 API"

 },

 "version": "2.0.0"

},

"title" contains the ConfigurationID of the REST API definition.

"description" contains a short description of the application.

"contact" contains contact information for the exposed API: the name of the organization,
the URL that points to the contact information, and the email address of the organization.

"license" contains information about the license that is needed to make use of the Planon
Generic REST API.

"version" contains the version number of the document. The version number consists of
three parts: major changes, minor changes, and small changes.

SERVERS object

This object shows the server on which the API is running.

For example:

"servers": [

 {

 "url": "https://myenvironment.plnd.cloud/sdk/system/rest/v2"

 }

],

The "url"-property contains a URL with the following format:
24 SERVERS object

[[DOMAIN]]/sdk/system/rest/v[[API-VERSION-NUMBER]]

When a new version becomes available, the old version will be available until it is no
longer used.

SECURITY object

The security object contains the required security scheme to execute the operations.

For example:

"security": [

 {

 "planon_apikey": []

 }

],

PATHS object

This object holds the relative paths to the individual endpoints and their operations. The
path is appended to the URL from the server object in order to construct the full URL.
The Paths object can contain multiple Path instances.

For non-authorizable BOs, it contains 2 Path instances:

• "/read/{configuration ID}"

• "/lookup/{configuration ID}/{lookup_value}"

For all other BOs, it also contains a number of additional Path instances:

• "/update/{configuration ID}"

• "/delete/{configuration ID}"

• "/changeState/{configuration ID}" (optional)

• "/execute/{configuration ID}/BomAdd"

• "/execute/{configuration ID}/BomSave"

• and some more, mirroring the BOMs that are exposed by Planon for
this specific BO.

Sample Path object:

PATHS object 25

The POST definition consists of four parts:

• "description" contains a brief explanation of this operation

• "parameters" list the parameters applicable for this PATH (optional)

• "requestBody" allows us to retrieve the body of the request

• "responses" defines what type of responses can be returned

◦ 200 when the request was successful

◦ 201 when the create request was successful

◦ 404 when an incorrect version number has been returned

◦ 422 in case of a business error

◦ 4XX in case of a client error

◦ 5XX in case of a server error

◦ Default otherwise

As this REST API only works on POST, the other options (GET, PUT and DELETE) are not
described.

Examples of endpoints

26 Examples of endpoints

As explained in About the Planon REST API, six main endpoints are supported:

• {domain}/sdk/system/rest/v2/execute/{configurationID}/{bom}

• {domain}/sdk/system/rest/v2/lookup/{configurationID}/{lookup_value}

• {domain}/sdk/system/rest/v2/changeState/{configurationID}/
{targetState}

• {domain}/sdk/system/rest/v2/read/{configurationID}

• {domain}/sdk/system/rest/v2/update/{configurationID}

• {domain}/sdk/system/rest/v2/delete/{configurationID}

There can be more endpoints, depending on the available BOMs.

The examples in this section, are based on the BO UsrReservationMeetingRoom, which
allows you to manage meeting room reservations.

Create

First, let’s create a new meeting room reservation ‘Demo reservation’. As the BO
UsrReservationMeetingRoom has one main BomAdd method, we will use that one: /
execute/UsrReservationMeetingRoom/BomAdd.

There are five fields required to be filled in for a reservation:

• Start date & time

• End date & time

• Order group

• Property

• Reservation unit

As order group, property, and reservation unit are references to other BOs, they must
contain the unique syscode value pointing to a record in their respective BOs.

• 6 refers to order group ‘05, Project management’

• 8 refers to property ’14, Columbus Square’

• 90 refers to reservation unit ‘0.33 Bach’

The POST request /execute/UsrReservationMeetingRoom/BomAdd then looks like this:

{

 "values": {

 "BeginDateTime": {

 "date": "2022-12-01",

 "time": "14:00:00"

 },
Create 27

 "EndDateTime": {

 "date": "2022-12-01",

 "time": "16:00:00"

 },

 "OrderGroupRef": 6,

 "PropertyRef": 8,

 "ReservationUnitRef": 90,

 "Description": "DEMO reservation"

 }

}

The response contains many more fields that were filled automatically by the Planon
application based on the values given in the request. This is identical to what happens
when this request is entered in the Planon application manually:

{

 "records": [

 {

 "AllSubOrdersCompleted": false,

 "AppointmentBooking": false,

 "BeginDateTime": {

 "date": "2022-12-01",

 "time": "14:00:00"

 },

 "BeginDateTimeUser": "2022-12-01T14:00:00Z",

 "BusinessObjectDefinitionRef": 730,

 "BusinessObjectStateRef": 229,

 "CumulativeTotalActualCostExclVAT": 25,

 "CumulativeTotalActualCostsInclVAT": 25,

 "Description": "DEMO reservation",

 "DeskConfigurationRef": 20,

28 Create

 "EHSRequired": false,

 "EndDateTime": {

 "date": "2022-12-01",

 "time": "16:00:00"

 },

 "EndDateTimeUser": "2022-12-01T16:00:00Z",

 "EngineerSignOffRequired": false,

 "ExcludeFromInvoiceApproval": false,

 "FloorRef": 123,

 "GroupedInvoice": false,

 "HighPriority": false,

 "IncludeRevenueEstimations": true,

 "InsertDateTime": "2022-12-01T10:58:00Z",

 "InsertSourceSystemRef": 8,

 "Interest": false,

 "InternalCoordinatorPersonRef": 306,

 "LastStateChangedDateTime": "2022-12-01T10:58:00Z",

 "OrderGroupRef": 6,

 "OrderNumber": "266.00",

 "PropertyRef": 8,

 "ProposalStateDateTime": "2022-12-01T10:58:00Z",

 "RefBODefinitionUserDefined": 2918,

 "RefBOStateUserDefined": 1045,

 "ReservationUnitRef": 90,

 "SharedId": "A11B63BD-0C34-4333-9EF3-2E57B44F5E91",

 "SignOffRequired": false,

 "SpaceRef": 262,

 "SysAccountRef": 1,

 "Syscode": 575,

 "SysDataSectionRef": "BP",
Create 29

 "SysIsArchived": false,

 "SysIsDeleted": false,

 "SysIsStandardOrder": false,

 "SysMutationDateTime": "2022-12-01T10:58:17Z",

 "SysOrderID": 266,

 "SysUpdateCount": 0,

 "TotalActualCostExclVAT": 25,

 "TotalActualCostsInclVAT": 25

 }

]

}

Read

Let’s see if the /read/UsrReservationMeetingRoom endpoint can find it:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"

 }

 }

}

Yes! The response is exactly the same as the response we got on the Create.

Lookup

Using the /lookup/UsrReservationMeetingRoom/{lookup_value} endpoint is another way
to find one specific reservation.

30 Lookup

But which field holds the lookup value? This information can be found in the OpenAPI
document in the ‘description’ field of the ‘lookup_value’ parameter of the ‘/lookup’
endpoint:

Have a look at the result of the Create request. The field "OrderNumber" has value
"266.00". So, the request should be /lookup/department/266.00.

As the body of the lookup endpoint is always ignored, you can put anything in there:

{the quick brown fox jumps over the lazy dog}

Best will be:

{}

The response is exactly the same as what we got with the Create.

Update

Suppose we want to change the time of the reservation. For that, we use the /update/
UsrReservationMeetingRoom endpoint:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"

 }

 },

Update 31

 "values": {

 "BeginDateTime": {

 "date": "2022-12-01",

 "time": "16:00:00"

 },

 "EndDateTime": {

 "date": "2022-12-01",

 "time": "17:00:00"

 }

 }

}

The response shows the updated value:

{

 "records": [

 {

 ...

 "BeginDateTime": {

 "date": "2022-12-01",

 "time": "16:00:00"

 },

 ...

 "Description": "DEMO reservation",

 ...

 "EndDateTime": {

 "date": "2022-12-01",

 "time": "17:00:00"

 },

 ...

 }
32 Update

]}

Delete

And finally, the reservation can be deleted through /delete/UsrReservationMeetingRoom:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"

 }

 }

}

Note that the response now throws a double warning:

{

 "warnings": [

 {

 "code": "PN_H00427",

 "description": "If you delete Reservation meeting room, Order costs connected with field
 Order will be deleted as well."

 },

 {

 "code": "PN_H00427",

 "description": "If you delete Reservation meeting room, Reservation cost specifications
 connected with field Reservation will be deleted as well."

 }

],

 "confirmations": null,

 "errors": null

Delete 33

}

If the same is done directly in the Planon application, you will receive a warning pop-up,
after which you can Proceed:

These PN_H00427 warnings can be caught by adding an Answers block:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"

 }

 },

 "answers": {

 "warnings": [

 {

 "code": "PN_H00427"

 }

]

 }

34 Delete

}

The response shows no records, as the reservation with that name is no longer there:

{

 "records": []

}

ChangeState

The initial status of a reservation is Confirmed. From Confirmed, a reservation can go to
No check, Option, Completed, Early departure, No show and Cancelled according to the
flow diagram in the Planon application:

For example, completing the reservation can be done by calling /changeState/
UsrReservationMeetingRoom/UsrReservationCompleted:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"

 }

ChangeState 35

 }

}

The response is exactly the same as what we got with the Create.

Retrieve / Download file

Downloading a file using the REST API consists of two steps:

1. Get the encrypted path by using the /read endpoint
2. Using that encrypted path to retrieve the file

With the /read endpoint the encrypted paths of all files and images can be retrieved:

36 Retrieve / Download file

With these answers, the individual files can be downloaded by pasting the encrypted
path behind the download path.

For example, the secure document can be downloaded through:

GET https://{domain}/sdk/system/rest/v2/download/
LVeI6ChBtawNTopIGEixoGTzNaZOtHdy8ibreoIX2lzDRshjiZkz
+PXhAtJJkeIIfTfkDantHZxuPHHn/VFTMP4hLcEYFUUWUzqlhL4Kjg0=/Cleaning Contract.docx

Retrieve / Download file 37

Attach / Upload file

Uploading a file using the REST API consists of two steps:

1. Get the UUID by using the /uploadFile endpoint
2. Using that UUID in the /update endpoint

First, we need to create a new endpoint that POSTs to

https://{domain}/sdk/system/rest/v2/upload

Clear the header key ‘Content-Type = image/png’

Add a new header key ‘Content-Type = application/octet-stream’

The error '415 Unsupported Media Type' pops up, when the additional parameter
'Content-Type' with value 'application/octet-stream' has not been set.

In the Body of the request, you can select a file. A different UUID will be returned for
each uploaded file:

38 Attach / Upload file

The files will be stored in the so-called Inboundbox.

Their respective UUIDs can then be used on the /update endpoint:

The warning "The existing file will be overwritten. Do you want to proceed?" can be caught
by using the "warning" clause with code "PN_H01123" in the "answers" section.

Attach / Upload file 39

The /update request will return the updated links to the files:

Detailed information on the body of the request

Filters in the body

The filter block in the body is used for filtering the result of a read, lookup or execute call.
In the filter, multiple lines can be added, where each line functions as an AND filter.

The following operators are available:

Operator Description

exists value = true: returns all records where
the given field name has a value.

value = false: returns all records
where the given field name does not
have a value.

eq returns all records that match exactly.

ne returns all records that do not match.

lt returns all records with a lesser value
than the given value.

le returns all records with a lesser value
than or equal to the given value.

gt returns all records with a greater value
than the given value.

40 Filters in the body

Operator Description

ge returns all records with a greater than
or equal to the given value.

Note: Use double quotes for strings and no quotes for numbers, true and false.

Example for Person BO
Looking for a person named ‘John’ who is working for us.

{

 "filter": {

 "FirstName": {

 "eq": "John"

 },

 "EndDate": {

 "exists": false

 }

 }

}

Example for UrsReservationMeetingRoom
Looking for low priority reservations on a specific day for a specific property.

{

 "filter": {

 "BeginDateTime": {

 "gt": {

 "date": "2022-12-22",

 "time": "00:00:00"

Filters in the body 41

 }

 },

 "EndDateTime": {

 "lt": {

 "date": "2022-12-23",

 "time": "00:00:00"

 }

 },

 "PropertyRef": {

 "eq": 8

 },

 "HighPriority": {

 "eq": false

 }

 }

}

Values in the body

The values block is used for updating one or more records of a specific business object.

Which records should be updated, is defined in the filter block. The to-be-updated values
have to be listed in the values block.

Example
UsrReservationMeetingRoom BO: Updating the start and end time of a specific
reservation:

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"
42 Values in the body

 }

 },

 "values": {

 "BeginDateTime": {

 "date": "2022-12-22",

 "time": "16:00:00"

 },

 "EndDateTime": {

 "date": "2022-12-22",

 "time": "17:00:00"

 }

)

}

Answers in the body

When executing a BOM, warnings can be triggered or confirmations may be required. In
order to fully process the request these warnings and confirmations must be bypassed.

This can be done in the "answers" block. If no answers are provided, an error will
be returned stating the error code, so that the developer can change the request
accordingly.

Dealing with warnings
Warnings can be caught by adding a "warnings" clause to the "answers" block.

Example
When deleting a meeting room reservation (/delete/UsrReservationMeetingRoom):

{

 "filter": {

 "Description": {

 "eq": "DEMO reservation"
Dealing with warnings 43

 }

 },

 "answers": {

 "warnings": [

 {

 "code": "PN_H00427"

 }

]

 }

}

This means that all PN_H00427 warnings will be ignored in this call. We’ve already seen
in the section on Delete that removing our reservation threw this same warning twice.
Listing it once in the request is good enough.

Dealing with confirmations
Confirmations can be caught by adding a "confirmations" clause to the "answers"
block.

Example
When updating the distribution area of a property. In the Planon application, the question
comes up whether sub-properties should inherit this change:

44 Dealing with confirmations

When using a request to do this, these questions can be caught by using an "answers"
block with a "confirmations" clause (/update/Property):

{

 "filter": {

 "Name": {

 "eq": "Columbus Campus"

 }

 },

 "answers": {

 "confirmations": [

 {

 "code": "PN_A00903",

 "answer": true

 }

Dealing with confirmations 45

]

 },

 "values": {

 "DistributionArea": "South-West"

 }

}

Consequently, all answers to question PN_A00903 will be set to "Yes" for this call.

Again, listing it once in the request is good enough.

Note that it is not possible to set some answers to "Yes" and others to "No". Note that
when adding multiple "confirmations" clauses for the same confirmation-ID, only the last
one will be executed for all.

Arguments in the body

The arguments block is used when executing a BOM that needs arguments.

In the JSON documentation, all arguments are listed with their respective BOMs. And
when arguments are missing in a request, the error message will show their names.

Example
/execute/UsrAsset/BomDeepCopy: Making a deep copy of an asset with syscode 766.

{

 "filter": {

 "Syscode": {

 "eq": 766

 }

 },

 "arguments": {

 "BOType.AssetMaintenanceChecklistItem": false,

 "BOType.AssetMaintenanceServicePlan": true,

46 Arguments in the body

 "BOType.CounterMeter": false,

 "BOType.DefectListBaseAsset": false,

 "BOType.GaugeMeter": false,

 "BOType.Hazard": true,

 "BOType.InventoryItem": false,

 "BOType.InventoryItemComponent": true,

 "BOType.MaintenanceActivityDefinitionAdditionalCosts": false,

 "BOType.MaintenanceActivityDefinitionManHourCosts": false,

 "BOType.MaintenanceActivityDefinitionMaterialCosts": true,

 "BOType.StdMaintenanceServicePlanAsset": true,

 "CopyNumber": 1,

 "DestPropertyRef": 6,

 "NrCopies": 1,

 "copyDivergentDataLinkedSrvPlan": false

 }

}

Arguments in the body 47

Advanced features

This section describes more advanced features of using the REST API.

File handling
It is possible to attach and retrieve documents and images to Business Objects through
the REST API.

There are two types of file locations:

• regular file locations

• secure file locations

In addition, there are three type of field formats that are relevant here:

• Document field – displays the path and the name of the file

• Secure document field – displays the name of the file

• Image field – shows a preview of the image (jpg, jpeg, png and gif are
allowed file types)

In this section, we have a look at the ‘Communication logs’ of ‘Property details’. On the
layout, files of all three file types can be added:

The secure document location, allowed file types, and maximum upload sizes are
configured in System settings > File locations.

Remove file

For removing files from the Planon application, you can use the /update-request.

In the request, an empty string can be assigned to document fields, which will result in
the removal of the file reference.

48 Remove file

Example

Attributes on Assets

Attributes on Assets 49

Unlike SOAP webservices, the REST API can perform read/write actions on the Asset
BO field Attributes.

This section explains how to work with attributes on assets through the REST API.

It is not possible to create an asset, connect it to an attribute set, and set its attribute
values all in one go. In the REST API, these action are separate steps.

P r o d e d u r e
1. Create the new asset.
2. Attach an attribute set.
3. Set Attribute values.

In the examples of this section the attribute set Test
attribute-set will be used. It is connected to these attribute
definitions:

Attaching an attribute set

To attach an attribute set to an asset, you can use the /execute/BaseAsset/
ApplyAttributeDefinitionSet.

50 Attaching an attribute set

This request attaches attribute set with syscode=23 to asset with Code=“000244”.

The arguments AttributeDefinitionSetRef2 and AttributeDefinitionSetRef3 are unavailable
for general use until further notice.

To find out what the syscode of the attribute set is, execute the /read/
AttributeDefinitionSet request:

Detaching an attribute set

If, for some reason, the attached attribute set needs to be removed, you can do this by
using the /execute/BaseAsset/DetachAttributeDefinitionSet endpoint.

"AttributeSet1Selected": true means that the set will be detached.

"AttributeSet1Selected": false means the set will remain attached.

This request detaches attribute set with syscode=23 from asset with code=“000244”.

The arguments AttributeSet2Selected and AttributeSet3Selected are unavailable for
general use until further notice.

Setting attribute values

After only attaching an attribute set, all its values are still empty.

Setting attribute values 51

To set the individual attribute values, you can use the /execute/BaseAsset/
BomFieldChange endpoint:

‘\n’ represents a newline character.

52 Setting attribute values

Reading attribute values

For retrieving the attribute values of Assets business objects, you can use the /execute/
BaseAsset/BomRead request.

The attributes are shown as members of the attribute set for the respective business
object:

Removing attribute values

To remove attribute values, you can use null for all datatypes in the /execute/BaseAsset/
BomFieldChange endpoint.

Removing attribute values 53

As a result, these four attributes will lose their value. The other attributes in the set keep
their value.

Batch processing
With batch processing a group of requests can be combined into one batch. Each
request has a corresponding response showing their id, url and body.

The Microsoft Graph API that we use, has a request limit of 20 individual requests. If that
limit is exceeded, an HTTP 429 (Too Many Requests) will be returned.

Error handling:

• Syntax errors cancel the complete batch

• Other errors only cancel the individual request

For now, only the /execute, /delete and /update endpoints have been implemented.

Sample batch request
When you want to replace the attribute set on an asset, a few steps need to be taken:

1. Remove the current attribute set (if there is any)
2. Attach another attribute set
3. Set the values on the new attribute set

The same example as in the Attributes on Assets section will be used here.
54 Batch processing

Request

With id 1:

Batch processing 55

And id 2:

And id 3:

56 Batch processing

Response
• Request id 1 returns an error, as this Asset apparently did not have an

attribute set attached yet.

• Request id 2 and 3 are processed correctly.

Batch processing 57

With id 2:

58 Batch processing

And id 3:

Request header
Planon uses sessions to store general information that determines the behavior of the
application.

This can be information about the language, data section (property set) or reference
date. Especially the last option is very important in the area of Spaces & Workspaces.

In order to use this information in REST API, you must add a parameter to the HTTP
header. The header itself carries meta information and the parameters carry actual data.

Headers are grouped together alphabetically. If no parameter is set, the response will fall
back to the default.

The following table lists the parameter that is currently available to set session data.

Request header 59

Parameter Contains Type

ReferenceDate Sets a sessions reference date.

Note that you should enable the use
of reference date to have any effect.

Date

How it works
If a request is received, a check for custom parameters is performed. All values from
custom parameters must be stored.

First, the session is initialized with default settings. The values for these settings are
stored in the user profile. Once the session is initialized the stored values from the
header parameters must be assigned to the appropriate session properties and only then
the request itself can be processed.

ReferenceDate
You can use a reference date to access time-dependent data. Setting a reference date
allows you to retrieve only business objects that are valid either on, before or after this
date.

• If the header does not contain the ReferenceDate parameter, the
default date (current date) is active and nothing is done.

• If the header contains the ReferenceDate parameter and that has a
value, this value needs to be validated:

◦ If the value equals none, the useReferenceDate session parameter is set to
False. This means that the reference date is not taken into account when filtering
business objects.

◦ If the value does not equal none, the value must be validated for a proper date.
This date must comply to the ISO8601-standard, which is YYYY-MM-DD. In this
example, the 1st of October 2023 would then be 2023-10-01.

◦ If the date does not match this format or the date itself is invalid, the current date
stays active.

• If the date passes validation, the ReferenceDate session parameter is
set to the given date.

Example

ReferenceDate: 2023-10-01

Content-Type: application/json

60 Request header

Authorization: PLANONKEY accesskey=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzUxMiJ9.
[...]r_3LCaao7RxYuho6Q

User-Agent: PostmanRuntime/7.33.0

Accept: */*

Postman-Token: e6be7525-4749-48e2-9228-1f7d2abcaabe

Host: tbschout-acc.plnd.cloud

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 68

Cookie: JSESSIONID=FC792A8BF242D76A547339933F0FD6B1;
 PLANONINGRESS=f262276955e44[...]292805c80

Request header 61

Endpoint patterns

The REST API must support all CRUD-operations as well as Lookup- and Statechange-
operations on a selected business object.

It is important to have the Statechange-operation, because changing a business object's
status may trigger some business logic.

The REST API also needs to support an an Execute-operation for executing different
BOMs on a business object.

Finally, there is an endpoint for uploading and for downloading.

In addition to these operations, the REST API also needs to support versioning to be
able to implement changes without breaking a customer's implementation.

In order not to expose too much information in the actual REST API, only POST-requests
are used.

The following sections describe the supported endpoints.

Read endpoint
The Read-endpoint is meant to read a business object defined in the endpoint definition.

The result can contain more than 1 business object.

Example

http://{environment}/sdk/system/{version}/read/{definition.configurationID}

Request
In the request body you can use the filter-tag to select the appropriate business objects.

{

 "filter": {

 "Syscode": {"eq": 260 }

62 Read endpoint

 }

}

Response
The response will be a list of records that apply to the filter.

{

 "records": [

 {

 "City": "Boxmeer",

 "SysMutationDateTime": "2021-09-15T15:14:01+02:00",

 "Country": "Netherlands",

 "Syscode": 260

 }

]

}

Update endpoint
The Update-endpoint is meant to update a business object defined in the endpoint
definition.

In the request body there are 4 tags: filter, values, answers and arguments. In the filter
tag you specify the business object you want to update. In the values tag you set the
values for the properties for that business object.

It is not possible to update multiple business objects in one go. If the filter selects more
than one business object, only the first one is processed.

Example

Update endpoint 63

http://{environment}/sdk/system/{version}/update/{definition name}

Request

{

 "filter": {

 "Syscode": {"eq": 260 }

 },

 values: {

 "Country": "Netherlands"

 }

}

Response
The response will contain the updated business object and the fields that are defined in
the endpoint definition.

{

 "records": [

 {

 "City": "Boxmeer",

 "SysMutationDateTime": "2021-09-15T15:14:01+02:00",

 "Country": "Netherlands",

 "Syscode": 260

 }

]

64 Update endpoint

}

Delete endpoint
The Delete-endpoint is meant to delete a business object that is defined in the endpoint
definition.

It is unlikely that this operation will be used often, but it is there to comply to business
requirements. In the body of the request, the filter-tag can be used to select the
appropriate business object.

It is not possible to delete multiple business objects in one go. If the filter selects more
than one business object, only the first one is processed.

Example

http://{environment}/sdk/system/{version}/delete/{definition name}

Request

{

 "filter": {

 "Syscode": {"eq": 260 }

 }

}

Response

{

Delete endpoint 65

}

Execute endpoint
The Execute endpoint is available to trigger the business object's BOMs (methods) from
the endpoint definition.

This means that all functionality that is available on a business object can be used trough
the REST API. If a BOM needs parameters, they are passed in the request body as
arguments.

It is not possible to execute a BOM on multiple business objects in one go. If the filter
selects more than one business object, only the first one is processed.

Example

http://{environment}/sdk/system/{version}/execute/{definition name/{BOM name}

Request
In the request body the values tag sets the values for the properties on the new business
object.

{

 "values" : {

 "IsUpdateQtyOnNumberOfPersonChange": false,

 "ItemCostsExclVAT": 0.00,

 "ItemCostsInclVAT": 0.00,

 "OrderRef": 540,

 "ReportedBack": false

 }

}

66 Execute endpoint

Response
The response will contain the newly created business object and the fields that are
defined in the endpoint definition.

{

 "records": [

 {

 "IsUpdateQtyOnNumberOfPersonChange": false,

 "ItemCostsExclVAT": 0.00,

 "ItemCostsInclVAT": 0.00,

 "OrderRef": 540,

 "ReportedBack": false

 }

]

}

Lookup endpoint
The Lookup endpoint is meant to search on certain lookup values that are defined on the
business object from the endpoint definition.

The lookup-value is added to the URL and will look as follows:

Example

http://{environment}/sdk/system/{version}/lookup/{definition name}/{lookup value}

Response
Lookup endpoint 67

The response will contain 1 or more business object that meet the lookup-value.

{

 "records": [

 {

 "City": "Boxmeer",

 "SysMutationDateTime": "2021-07-15T15:14:01+02:00",

 "Country": "Netherlands",

 "Syscode": 260

 },

 {

 "City": "Wijchen",

 "SysMutationDateTime": "2021-09-01T11:58:01+02:00",

 "Country": "Netherlands",

 "Syscode": 460

 },

]

}

ChangeState endpoint
The changeState endpoint is important because business logic is triggered when
changing the status of a business object. Consequently, an endpoint must be available.

It is not possible to change a status on multiple business objects in one go. If the filter
selects more than one business object, only the first one is processed.

Example

http://{environment}/sdk/system/{version}/changeState/{definition name}/{target state}

68 ChangeState endpoint

Request
In the request body you can use the filter tag to select the appropriate business object.

{

 "filter": {

 "Syscode": {"eq": 260 }

 }

}

Response
The response will contain the updated business object and the fields that are defined in
the endpoint definition.

{

 "records": [

 {

 "City": "Boxmeer",

 "SysMutationDateTime": "2021-09-15T15:14:01+02:00",

 "Country": "Netherlands",

 "Syscode": 260

 }

]

}

OpenAPI endpoint

OpenAPI endpoint 69

To properly document an API, a number of standards are available. The OpenAPI
standard is the best known standard, which is why is has been selected to document the
REST API.

The OpenAPI document can be used in tools such as Postman or in Swagger, and is
intended for developers to get a better understanding of how the Planon Generic REST
API works.

Example

http://{environment}/sdk/system/{version}/openapi/{definition name}.json

Calling this endpoint will return a JSON file for the definition mentioned in the endpoint.

Response

{

 "openapi": "3.0.1",

 "info": {

 "title": "Documentation for use of the Planon Generic REST API Department definition",

 "description": "This document describes how to use the Planon Generic REST API
 Department definition. To use this interface you have to create an api key in the Planon
 application.",

 "contact": {

 "name": "Market leading Real Estate and Facility Management software",

 "url": "https://planonsoftware.com",

 "email": "info@planonsoftware.com"

 },

 "license": {

 "name": "License with product code E00910 is needed to use the Planon Generic REST
 API"

 },

 "version": "2.0.0"

70 OpenAPI endpoint

https://www.postman.com/
https://swagger.io/

 },

 "servers": [

 {

 "url": "https://planon-acc.plnd.cloud/sdk/system/rest/v2"

 }

],

 "security": [

 {

 "planon_apikey": []

 }

],

 "paths": {

 "/read/Department": {

 "post": {

 "description": "Read data",

 "requestBody": {

 "content": {

 "application/json": {

 "schema": {

 "properties": {

 "filter": {

 "$ref": "#/components/schemas/filter"

 }

 }

 }

 }

 },

 "required": true

 },

 "responses": {

OpenAPI endpoint 71

 "422": {

 "description": "Returned upon a business error",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/components/schemas/businessMessages"

 }

 }

 }

 },

 "4XX": {

 "description": "Returned upon a client error",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/components/schemas/systemError"

 }

 }

 }

 },

 [...]

 },

 "securitySchemes": {

 "planon_apikey": {

 "type": "apiKey",

 "description": "Use for value: 'PLANONKEY accesskey={{SEC-TOKEN}}'",

 "name": "Authorization",

 "in": "header"

 }

 }

72 OpenAPI endpoint

 }

}

Batch endpoint
The batch-endpoint provides a way to send up to 20 requests in one go. Each request
will have a separate response inside the response and is identified by the id set in the
request.

Example

http://{environment}/sdk/system/{version}/batch

Request
In the body of each request, the filter-tag can be used to select the appropriate business
objects.

{

 "requests": [

 {

 "id": "1",

 "url": "http://{environment}/sdk/system/2/read/Department",

 "body": {

 "filter": {

 "Syscode": {"eq": 260 }

 }

 },

 {

 "id": "2",
Batch endpoint 73

 "url": "http://{environment}/sdk/system/2/read/Person",

 "body": {

 "filter": {

 "Syscode": {"eq": 460 }

 }

 }

]

}

Response
The response will contain a response for each request.

{

 "responses": [

 {

 "id": "1",

 "status": "200",

 "body": {

 "records": {

 "records": [

 {

 "City": "Boxmeer",

 "Country": "Nowhere land",

 "Syscode": 260

 }

]

 }

 }

74 Batch endpoint

 },

 {

 "id": "2",

 "status": "200",

 "body": {

 "records": {

 "records": [

 {

 "firstname": "Peter",

 "lastname": "Billings",

 "Syscode": 460

 }

]

 }

 }

 }

}

Download endpoint
The Download-endpoint makes it possible to download documents or images attached
to a business object. The encrypted path and file name can be retrieved through a Read-
request.

If the download endpoint is called the file will be automatically downloaded.

{

 "records": [

 {

 "Code": "304",

 "Email": "Alice.Wilson@planon.co.uk",

 "FirstName": "Alice",

Download endpoint 75

 "LastName": "Wilson",

 "PhotoRef":
 "UGVyc29uLzMyL1Bob3RvUmVmL2h0dHA6Ly90b21jYXQtd2ViZGF2OjgwODEvd2ViZGF2L0ltYWdlcy9QZXJzb25uZWwvRjA2Ny5qcGc=/
F067.jpg",

 "Syscode": 32,

 }

]

}

download request

http://{environment}/sdk/system/{version}/download/
UGVyc29uLzMyL1Bob3RvUmVmL2h0dHA6Ly90b21jYXQtd2ViZGF2OjgwODEvd2ViZGF2L0ltYWdlcy9QZXJzb25uZWwvRjA2Ny5qcGc=/
F067.jpg

Upload endpoint
Uploading a file in REST API is a two-step process.

First, a user uses the Upload-endpoint to get the file in an inbound box and a UUID is
returned. Subsequently, this UUID is set to the appropriate field in an Update-request.

The REST API will retrieve the file from the inbound box and place it in the correct place
and store the actual file path in the business object.

When sending a file to this endpoint, the Content-Type in the header should be set to
application/octet-stream. When this request is valid, a UUID will be returned that can
be used in an Update request (see example).

Example

{

 "filter" : {

 "Code" : {"eq" : "304"}

 },

 "values" : {

 "PhotoRef": {

 "filename": "alice_wilson.jpg",

76 Upload endpoint

 "uuid": "9df99275-2fcb-4541-9e3e-0c00b8022b81"

 }

 }

}

Upload endpoint 77

Index

Index
A

Assets
Attributes 49

Attribute set
Adding values 51
Attach 50
Detaching 51

Attribute values
Reading 53
Removing 53

B
Batch endpoint 73
Body

Answers 43
Arguments 46
Confirmations 44
Filters 40
Values 42
Warnings 43

C
ChangeState enpoint 68

D
Definitions

Creating definitions 16
Multi-level 17
Single level 16
Using definitions 19

Delete endpoint 65
Download endpoint 75

E
Endpoint

Batch 73
ChangeState 35, 68
Create 27
Delete 33, 65
Download 75
Execute 66
Lookup 30
OpenAPI 69
Read 30, 62

Update 31, 63
Upload 76

Endpoint patterns 62
Enpoint

Lookup 67
Enpoints

Examples 26
Execute endpoint 66

F
File handling 48

Attach/Upload file 38
Remove file 48
Retrieve/Download file 36

L
Lookup endpoint 67

O
OpenAPI

Info 23
property 23
security 25, 25
servers 24

OpenAPI document 23
Generate and import 19

OpenAPI endpoint 69

R
Read endpoint 62
ReferenceDate 59
Request body

Detailed information 40
Request header

reference date 59
REST API

About... 8
Advanced features 48
Basics 12
BOs allowed 16
BOs and Fields 15
Definitions level 12
Field definitions level 13
Fields allowed 16
Introduction 7, 7
License usage level 14
Licentse 10

78 - Index

Index

Methods 8
Navigation panel 10
Prerequisites 10
Principles 7
Security 11
User access 11
User interface 12

S
Sample request

Creating 20

U
Update endpoint 63
Upload endpoint 76

Index - 79

	Table of Contents
	Introduction to REST API
	About REST API in general
	Principles of REST API
	REST API Methods

	About the Planon REST API

	Prerequisites
	License
	Navigation panel
	Security
	User access

	Basic features
	User interface
	Definitions level
	Field definitions level
	License usage level

	Which BOs and Fields can be used in REST API calls?
	BOs that are allowed to be used
	Fields that are allowed to be used

	Creating definitions
	Single level definition
	Multi-level definition

	Using definitions
	Generate and import an OpenAPI document
	Creating a sample request

	OpenAPI document
	OPENAPI property
	INFO object
	SERVERS object
	SECURITY object
	PATHS object

	Examples of endpoints
	Create
	Read
	Lookup
	Update
	Delete
	ChangeState
	Retrieve / Download file
	Attach / Upload file

	Detailed information on the body of the request
	Filters in the body
	Values in the body
	Answers in the body
	Dealing with warnings
	Dealing with confirmations

	Arguments in the body

	Advanced features
	File handling
	Remove file

	Attributes on Assets
	Attaching an attribute set
	Detaching an attribute set
	Setting attribute values
	Reading attribute values
	Removing attribute values

	Batch processing
	Request header

	Endpoint patterns
	Read endpoint
	Update endpoint
	Delete endpoint
	Execute endpoint
	Lookup endpoint
	ChangeState endpoint
	OpenAPI endpoint
	Batch endpoint
	Download endpoint
	Upload endpoint

	Index

