
Data Aggregation

Planon Software Suite
Version: L105

© 1997 - 2024 Planon. All rights reserved.
Planon and the Planon logo are registered trademarks of Planon Software Development B.V. or its affiliates. All
other product and company names mentioned herein are trademarks or registered trademarks of their respective
companies. Planon Software Development B.V., its affiliates and/or licensors own the copyright to all Planon
software and its associated data files and user manuals.
Although every effort has been made to ensure this document and the Planon software are accurate, complete
and up to date at the time of writing, Planon Software Development B.V. does not accept liability for the
consequences of any misinterpretations, errors or omissions.
A customer is authorized to use the Planon software and its associated data files and user manuals within the
terms and conditions of the license agreement between customer and the respective legal Planon entity as soon
as the respective Planon entity has received due payment for the software license.
Planon Software Development B.V. strictly prohibits the copying of its software, data files, user manuals and
training material. However, customers are authorized to make a back-up copy of the original CD-ROMs supplied,
which can then be used in the event of data loss or corruption.
No part of this document may be reproduced in any form for any purpose (including photocopying, copying onto
microfilm, or storing in any medium by electronic means) without the prior written permission of Planon Software
Development B.V. No copies of this document may be published, distributed, or made available to third parties,
whether by paper, electronic or other means without Planon Software Development B.V.'s prior written permission.

About this Document

Intended Audience
This document is intended for Planon Software Suite users.

Contacting us
If you have any comments or questions regarding this document, please send them to:
support@planonsoftware.com.

Document Conventions
Bold
Names of menus, options, tabs, fields and buttons are displayed in bold type.

Italic text
Application names are displayed in italics.

CAPITALS
Names of keys are displayed in upper case.

Special symbols

Text preceded by this symbol references additional information or
a tip.

Text preceded by this symbol is intended to alert users about
consequences if they carry out a particular action in Planon.

mailto:support@planonsoftware.com
mailto:support@planonsoftware.com

Table of Contents

Table of Contents

Data Aggregation – An Introduction.. 6

Configuration of Data Aggregation.. 8

Registering extensions.. 8

Configuring ContainerSX in Field Definer... 8

Configuring ReportSX in Field Definer..12

Configuring CalculateSX in Field Definer..13

Data aggregation properties business object..15

Configuring Data aggregation properties...16

Aggregation properties BO for ReportSX and CalculateSX..16

General configuration.. 16

Variables to use in SQL..22

SQL for Data level.. 26

Data level.. 26

Details level...28

Aggregation of fields... 32

Scheduling of ReportSX or CalculateSX... 35

Scheduling... 35

Scheduling process... 35

Working with Data Aggregation Manager..36

ContainerSX...37

ReportSX..37

CalculateSX... 38

Authorization in DAM...38

DAM implementation steps..38

Field descriptions... 41

Aggregation data - fields... 41

4 - Table of Contents

Table of Contents

Aggregation details - fields..42

Index...44

Table of Contents - 5

Data Aggregation – An Introduction

This document describes the Data Aggregation solution extension.

Solution extensions (SX) are developed to extend the Planon ProCenter functionality.
Planon ProCenter calls these extensions at defined moments during the execution of
the program. Once installed and activated, a solution extension is an integral part of
the Planon ProCenter software and works in a similar way as business rules or other
functionality as provided by Planon.

Extensions are always triggered directly or indirectly by user actions (such as selecting,
adding, updating, changing a status etc.). In Planon ProCenter, business rules often
(though not always) manifest themselves in the form of dialog boxes that contain an error
message, warning or confirmation. User authorization is not taken into account when
business rules are executed.

The primary purpose of Data aggregation is to aggregate data from Planon, link it as a
benchmark of a property. But it can also be used for all other kinds of data aggregations.
The aggregated data can be used as management information.

Data aggregation contains three components.

ContainerSX

This SX creates a benchmark structure (‘container’) in which the aggregated data can be
placed. This benchmark structure can contain the following levels:

• Definition level

• Data level

ReportSX

This SX calculates and places the aggregated data in the benchmark structure that was
generated by ContainerSX. In this task, a third level can be added:

• Details level

CalculateSX

This SX calculates and place aggregated data in the same way as the ReportSX does,
but not in the benchmark structure. Consequently, you can use it to fill in aggregated data
in each Planon business object.

When the status of aggregation definition is changed to the configured status, the
following steps are conducted:

• Data is filled in configured fields at the Aggregation data level.
Fields are filled by the SQL queries defined in the Data aggregation
properties BO.

• Sum fields are processed.
If certain fields are configured for aggregation, the values of the
children fields are added to the parent's fields. If a certain field is not
configured to be updated, it will not be changed.

6 Data Aggregation – An Introduction

• Status of the aggregation definition is updated.
After a successful calculation of data, the status of the aggregation
definition is also updated. If ReportSX processing is not successful,
an error message is displayed. Also, logging of the run is performed in
the Comment field configured for the aggregation definition.

• Cleanup of existing Aggregation details level records.
Before the records and fields of the Aggregation details level are
filled, the existing records are deleted. The deletion is only performed
on the Aggregation details level records that are not linked to an
Aggregation data level record that is flagged for not updating.

• Aggregation details level records are added and fields are filled with
data.
The Aggregation details level records are added and the fields are
filled as configured in the Data aggregation properties BO.

For information on installing and registering an extension, see Supporting data >
Registering extensions.

Data Aggregation – An Introduction 7

https://webhelp.planoncloud.com/en/#page/Supporting%20Data/t_Registering_extensions.html

Configuration of Data Aggregation

This section describes how to configure the various Data Aggregation components

Registering extensions
Data Aggregation contains three extensions that together make the solution. An
explanation of the usage of each extension can be found in the next chapter. To make
the extensions available for use, they first have to be registered in Business processes >
SX Configuration. The extensions can be added with the following class names:

• nl.planon.cs.dam.ContainerSX

• nl.planon.cs.dam.ReportSX

• nl.planon.cs.dam.CalculateSX

Configuring ContainerSX in Field Definer
The ContainerSX extension is configured in the Data Aggregation Definition business
object:

On the Extension tab, add to the following extension:

• Extension = nl.planon.cs.dam.ContainerSX
8 Configuring ContainerSX in Field Definer

• Event type = AI, AfterDBInsert

• Sequence of execution = 1

The content of the Parameter field contains all configurable parameters, necessary for
the ContainerSX to work properly. The complete content must be:

Key Value example / Description

Container.BO.Name DataAggregationDefinition

Description

The name of the business object that holds
the definition (container) records (current
business object)

Data.BO.Name DataAggregationData

Description

The name of the business object that holds
the benchmark data level. This level has a 1-n
relation with the definition (container) level.

BenchmarkEntity.BO.Name Property

Description

The name of the business object that
holds the records (entities) that must be
benchmarked. Typically, this is the Property
business object.

Data.BO.ContainerRef.Name DataAggregationDefinitionRef

Description

The name of the field of the data level
business object which holds the link to the
definition (container) level business object.

Data.BO.Benchmark-
EntityRef.Name

FreeString12

Description

The name of the field of the data level
business object that holds the link to the
business object of the entities to benchmark.
Typically, this is a link to the Property
business object.

Data.BO.ParentRef.Name ParentRef

Description

The name of the field of the data level
business object that holds the link to the data

Configuring ContainerSX in Field Definer 9

Key Value example / Description
level business object that in the hierarchy is
the ‘parent’ of the current business object

BenchmarkEntity.BO.-
ParentRef.Name

AlternativeParentRef

Description

The name of the field of the business object
of the entities to benchmark which holds the
link to a similar business object that is to be
the parent in the hierarchical benchmark
structure.

BenchmarkEntity.BO.-
BenchmarkRef.Name

FK_ALTERNATIVE_PARENT_PROPERTY

Description

Same as previous, but here the database
name of the field.

Benchmark.Picklist.Name BENCHMARK

Description

Name of code/descriptive pick list in which all
benchmarks that can be used are specified.

Benchmark.Code IPD

Description

The code of the specific benchmark
for which purpose the Data business
object is configured (is part of
Benchmark.Picklist.Name)

Create.Hierarchical.Structure false or true

Description

When generating the data business objects,
a hierarchical structure is created as defined
by the parameters Data.BO.ParentRef.Name,
BenchmarkEntity.BO.ParentRef.Name and
BenchmarkEntity.BO.BenchmarkRef.Name.
However, if this parameter is set to false, the
hierarchical structure will not be created and
the three previously mentioned parameters
will be ignored.

Strict.ParentRef.Check false or true

Description

If set to true (default value) then, when
creating a hierarchical structure, all members
of the hierarchy must have a link to the
specified benchmark code. If that is not the

10 Configuring ContainerSX in Field Definer

Key Value example / Description
case, then the data business objects of this
hierarchical family are not created.

However, if this parameter is set to false, then
the data business objects will be created if
the corresponding benchmark entity has a
link to the specified benchmark code. The
hierarchical structure will only be created if
both parent and child have this link to the
specified benchmark code.

Example

In the hierarchy, if the grandparent and
grandchild have a link to the specified
benchmark code, but the parent does not,
then data business objects will be created for
both grandparent and grandchild, but in a flat
list.

Error.Mandatory.-
Parameters.Missing

Please provide parameter(s) :

Description

The default text of the error message that
will appear if one or more parameters are
missing.

Error.Mandatory.-
Parameter.Values.Missing

Please provide value for parameter(s) :

Description

The default text of the error message that
will appear if the values of one or more
parameters are missing.

Error.Invalid.Parameter.Value Invalid value for Parameter :

Description

The default text of the error message that will
appear if one or more parameters are set to
an invalid value.

When the extension is configured on the business object with correct layouts, TSI and
authorizations are configured, you can create a definition (container) record.

After inserting a new definition (container) record the ContainerSX will be executed.
This SX will create the data level records based on the specified parameters. The
records will be created in the specified hierarchical structure (unless the parameter
Create.Hierarchical.Structure is set to false).

Example of Parameter field

Container.BO.Name=UsrAggregationDefinition2

Configuring ContainerSX in Field Definer 11

Data.BO.Name=UsrAggregationData

BenchmarkEntity.BO.Name=Property

Data.BO.ContainerRef.Name=DataAggregationDefinitionRef

Data.BO.BenchmarkEntityRef.Name=FreeString12

Data.BO.ParentRef.Name=ParentRef

BenchmarkEntity.BO.ParentRef.Name=AlternativeParentRef

BenchmarkEntity.BO.BenchmarkRef.Name=FK_ALTERNATIVE_PARENT_PROPERTY

Benchmark.Picklist.Name=BENCHMARK

Benchmark.Code=IPD

Create.Hierarchical.Structure=true

Strict.ParentRef.Check=false

Error.Mandatory.Parameters.Missing=Please provide parameter(s):

Error.Mandatory.Parameter.Values.Missing=Please provide value for parameter(s):

Error.Invalid.Parameter.Value=Invalid value for Parameter:

Configuring ReportSX in Field Definer
The ReportSX extension is configured, for example, for the Aggregation definitions
business object.

On the Extension tab add the following solution extension:

• Extension = nl.planon.cs.dam.ReportSX

• Event type = BU, BeforeDBUpdate

• Sequence of execution = 1

The content of the Parameter field contains all configurable parameters
necessary for the ReportSX to work properly. The complete content must be:

Key Value example / Info

Debug y

Info

When this parameter is set to 'y' debug logging is switched
on, which is useful for testing SQL statements while
developing.

When this parameter is left out, the default value of ‘n’ is
taken.

12 Configuring ReportSX in Field Definer

Key Value example / Info

aggregation.propert-
ies.bo.code

aggregation.properties.bo.code = IPD

corresponds with BO record:

DataAggregationProperties.code = ‘IPD’

Info

DAM definitions to fill the data and details fields (see
ReportSX) can be given (with this key) in the Data
aggregation properties business object.

The code that is given here corresponds with the
Code field value of the record in the Data aggregation
properties business object.

execute.on.-
status.change

y or n

Info

If this parameter is set to ‘y’ the extension will only be
executed if the definition (container) record is changed to a
certain status.

When this parameter is left out, the default value of ‘n’ is
taken.

If this parameter is set to ‘n’ the extension will be executed
on every update.

Example of Parameter field

debug=y

aggregation.properties.bo.code=Report SX DAM

execute.on.status.change=true

Configuring CalculateSX in Field Definer
The CalculateSX extensions can be configured for any Planon business object.

On the Extension tab, add the following solution extension:

• Extension = nl.planon.cs.dam.CalculateSX

• Event type = BU, BeforeDBUpdate

• Sequence of execution = 1

The content of the Parameter field contains all configurable parameters
necessary for the CalculateSX to work properly. The complete content must
be:

Configuring CalculateSX in Field Definer 13

Key Value example / Info

Debug y or n

Info

When this parameter is set to 'y' debug logging is switched
on, which is useful for testing SQL statements while
developing.

When this parameter is left out, the default value of ‘n’ is
taken.

aggregation.propert-
ies.bo.code

aggregation.properties.bo.code = IPD

corresponds with BO record:

DataAggregationProperties.code = ‘IPD’

Info

DAM definitions to fill the data and details fields (see
CalculateSX) can be given (with this key) in the Data
aggregation properties business object.

The code that is given here corresponds with the
Code field value of the record in the Data aggregation
properties business object.

execute.on.-
status.change

y or n

Info

If this parameter is set to ‘y’, this extension will only be
executed if the definition (container) record is changed to a
certain status.

When this parameter is left out, the default value of ‘n’ is
taken.

If the CalculateSX is triggered by the update of a field
that you just changed and this field is used in the SQL
definitions, the old value and not the changed value is
used in the SQL.

Example of Parameter field:

debug=y

aggregation.properties.bo.code=Calculate SX DAM

execute.on.status.change=true

14 Configuring CalculateSX in Field Definer

Data aggregation properties business object
As described earlier in the ReportSX and CalculateSX parameters, the definitions to fill
the data and details fields can be provided in the Data aggregation properties business
object.

On the DAM TSI, on the Aggregation definitions level, the Aggregation properties step
is available.

The following fields are available:

Name Type

Code String(20)

Description

ID of the property file. In the SX parameter
‘aggregation.properties.bo.code’ this code is referenced.

Name String(255)

Description

Optional description.

Properties String extended

Description

Definitions to fill the data and details fields.

Comment String extended

Description

Free available comment field.

Free fields Standard set.

Data aggregation properties business object 15

Configuring Data aggregation
properties

The following sections describe how to configure the Data aggregation properties
business object.

Aggregation properties BO for ReportSX and
CalculateSX
The following keys can be configured for ReportSX and CalculateSX (using the Data
aggregation properties BO).

General configuration

Key Value example / Info Extension

Container.BO.-
Name

Container.BO.Name=-
UsrDataAggregationDefinition

Info

• Mandatory

• System name
of BO that holds
the definition
(container)
records (level
1).

ReportSX

Data.BO.Name Data.BO.Name=Usr-
DataAggregationData

Info

• Mandatory

• System name
of BO that
holds the Data
records (level
2).

ReportSX

16 General configuration

Key Value example / Info Extension

Data.Container.-
BO.Association

Data.Container.BO.-
Association=DataAggregationData|
DataAggregationDefinitionRef

Info

• Mandatory

• Association
between
Data BO and
definition
(container) BO.

• This can be
obtained from
Field Definer.
(Technical
information
tab, under
Associations).

ReportSX

State.Name.-
Update

State.Name.Update=UsrUpdate

Info

• Mandatory

• ReportSX:
System name
of statuses
in which the
definition
(container) BO
must be, for
updating the
Data BOs.

• CalculateSX:
System names
of statuses for
updating the
Calculate BO.

ReportSX/
CalculateSX

State.Name.-
AfterUpdate

State.Name.AfterUpdate=UsrCheck

Info

• Mandatory

• ReportSX:
System name
of status in
which the
definition

ReportSX/
CalculateSX

General configuration 17

Key Value example / Info Extension
(container) BO
must be set
after updating
the Data BOs.

• CalculateSX:
System name
of status in
which the
Calculate BO
must be set
after updating it.

Data.BO.Modify-
State.Name

Data.BO.ModifyState.-
Name=UsrModifyAll;

Info

• Mandatory

• System name
of state in which
the Data BO
must be to have
it updated.

• List of statuses
must be divided
by ;

ReportSX

Log.<flag> Log.TRUE =FreeRemark2

Info

• ReportSX:
System name
of field of
definition
(container) BO
in which the
logging must be
stored.

• CalculateSX:
System name
of field of
Calculate BO
in which the
logging must be
stored.

• Format
Log.<FLAG>=<Comment-
FieldName>

ReportSX/
CalculateSX

18 General configuration

Key Value example / Info Extension

• Possible values
for flag TRUE
and FALSE

Log.Detail Log.Detail =high

Info

• Possible
values: high,
low

• ‘high’ is the
default value
and will give the
complete log
along with the
executed query
statements.

• ‘low’ will only
log the value
obtained from
the query.

ReportSX/
CalculateSX

Log.Overwrite Log.Overwrite =true

Info

• Possible
values: true,
false

• ‘true’ will
overwrite the
existing log.

• ‘false’ is the
default value
and will append
the log text to
the existing log.

ReportSX/
CalculateSX

LogOnData-
Level.<flag>

LogOnDataLevel.TRUE-
=FreeRemark2

Info

• ReportSX:
System name
of field of data
BO in which the
logging must be
stored.

ReportSX

General configuration 19

Key Value example / Info Extension

• Format
LogOnDataLevel.-
<FLAG>=<Comment-
FieldName>

• Possible values
for flag TRUE
and FALSE

• When this
parameter is
set, the logging
will be per data
entity. If not set,
the logging will
be at definition
level.

LogOnData-
Level.Overwrite

LogOnDataLevel.Overwrite=true

Info

• Possible
values: true,
false

• ‘true’ will
overwrite the
existing log on
data level.

• ‘false’ is the
default value
and will append
the log text to
the existing log
on data level.

ReportSX

Suppress.Confir-
mation

Suppress.Confirmation= false

Info

• Possible
values: true,
false

• Confirmation
to launch
ReportSX or
CalculateSX:

• ‘true’ no
confirmation

ReportSX/
CalculateSX

20 General configuration

Key Value example / Info Extension

• ‘false’ (default
value)
confirmation
needed by user

Container.BO.sourc-
eID.Name

Container.BO .sourceID.Name
=FreeString1

Info

• If this
parameter
is given, the
configured
Container field
is filled with
the property
file name (not
the path) or
code of the
last executed
properties file or
BO.

• The Container
field must be of
type String.

• The Container
BO can be
‘DataAggregationDefinition’
or any other
configured BO.

• For
CalculateSX,
the container
is the BO on
which it is
registered
in Field
Definer (see
Configuring
CalculateSX in
Field Definer).

ReportSX/
CalculateSX

Example using the Data aggregation properties BO

debug=y

aggregation.properties.bo.code=IPD
General configuration 21

execute.on.status.change=true

Variables to use in SQL

You can define your own variables, based on Planon ProCenter
definition (container) and data level BOs, to use in your SQL. The
following types are supported:
• STRING

• INTEGER

• DECIMAL

• REFERENCE (referenced field)

• DATETIME

• SYSCODE (primary key field)

• CODESCODENAME (pick list code descriptive)

• CODESNAME (pick list descriptive)

• DATETIME_PROPERTY

• DATETIME_TRANSACTION

• BOOLEAN

You can define more than one variable. These variables can be used in the SQL for
data definitions and in other variables beginning and ending with ‘&’ character (see
examples). These variables can be used as parameters in SQL for both data and details
level and as parameters in other variable definitions.

There are 4 different kinds of variables you can define and use:

• Field (variable contains field value of definition (container) of data level
BO)

• Constant (variable contains a constant value)

• SQL

• Expression

Key Value example / Info Extension

Variable.Field.-
<VariableName>.-
<TYPE>

Variable.Field.PropertyRef.-
REFERENCE.INTEGER-
=Data.BO.Name.Free-
String12 (&PropertyRef&)
Variable.Field.ContainerRef.-
REFERENCE.INTEGER =
Data.BO.Name.DataAggregation-
DefinitionRef (&ContainerRef&)
Variable.Field.StartDate.DATETIME

ReportSX/
CalculateSX

22 Variables to use in SQL

Key Value example / Info Extension
= Container.BO.Name.BeginDate
(&StartDate&)

Info

• Variable to
be populated.-
Format:
Variable.Field.-
<VariableName>.-
<TYPE>=<Field-
Name>

• ReportSX: The
value should
contain the BO
name and the
field name.

For example :
Data.BO.Name.-
PropertyRef

• CalculateSX:
The value
should only
contain the
field name.

For example
PropertyRef

• If it is a
reference
field then the
reference field
type should
be configured
as shown in
the following
example :

Variable.Field.-
PropertyRef.-
REFERENCE.-
INTEGER

• ReportSX: BO
can only be
Data.BO.Name
(data level
fields) or
Container.BO.Name.
(definition

Variables to use in SQL 23

Key Value example / Info Extension
(container)
level)

• CalculateSX:
only fields of
the Calculate
BO can be
defined.

Variable.Constant.-
<VariableName>.-
<TYPE>

Variable.Constant.HighVatRate.-
DECIMAL=1.21 (&HighVatRate&)
Variable.Constant.-
UnitToLetOut.STRING-
=UsrUnitToLetOut (&UnitToLetOut&)
Variable.Constant.-
RefDateSpec.DATE=20/01/2014
(&RefDateSpec&)

Info

• Variable to
be populated.
Format:
Variable.Constant.-
<VariableName>.-
<TYPE>-
=<constant
value>

• Only types
STRING,
INTEGER,
DECIMAL,
DATE and
DATETIME
are allowed
for this type of
variable.

• No quotes
needed for
STRING,
DATE and
DATETIME
values

• Decimal
separator for
DECIMAL type
always . (dot)

ReportSX/
CalculateSX

24 Variables to use in SQL

Key Value example / Info Extension

• Format value
of DATE type:
"dd/MM/yyyy"

• Format value
of DATETIME
type: "dd/
MM/yyyy
hh:mm:ss"

Variable.SQL.-
<VariableName>-.
<TYPE>

Variable.SQL.WeeklyRateCompany-
Car.DECIMAL= { Select WEEK
From TRFGRP Where CODE =
‘CC’ } (&WeeklyRateCompanyCar&)

Info

• Variable to
be populated.
Format:
Variable.SQL.-
<VariableName>.-
<TYPE>=<-
SQL-select
statement>

• Only types
STRING,
INTEGER,
DECIMAL,
DATE and
DATETIME
are allowed
for this type of
variable.

• SQL string can
be given as
one line with
no carriage
returns or can
be divided
over more
lines. In the
last method
the query must
be started with
{ character and
ended with }

ReportSX/
CalculateSX

Variables to use in SQL 25

Key Value example / Info Extension

Variable.Expre-
ssion.<Variable-
Name>.;<TYPE>

Variable.Expression.-
WeeklyRateCompCar-
InclVat.DECIMAL=& WeeklyRate-
CompanyCar& * & HighVatRate&
(&WeeklyRateCompCarInclVat&)
Variable.Expression.-
NrWPTotal.DECIMAL=&NrFlex& +
&NrFixed& (&NrWPTotal&)

Info

• Variable to
be populated.
Format:
Variable.Expression.-
<VariableName>.
<TYPE>=-
<expression>

• Add/Subtract
support:
STRING,
INTEGER,
DECIMAL

• Multiply/
Divide support:
INTEGER,
DECIMAL

• Only simple
expressions
with two
operands and
one operator
(+, -, * or /) are
allowed here.

ReportSX/
CalculateSX

SQL for Data level

The following sections provide an overview of the fields and SQL configuration for the
Data level.

Data level
Based on SQL queries, specific fields on the Data level can be filled.

26 Data level

Key Value example / Info Extension

Field.<FieldN-
ame>.<TYPE>

Field.FreeString41.STRING=
select Free30 from OBJALG
where syscode = &PropertyRef&
or Field.FreeString41.STRING=
{ select Free30 from OBJALG
where syscode = &PropertyRef& }
Field.FreeDecimal1.DECIMAL=
select m2bvo from OBJALG where
syscode = &PropertyRef& or
Field.FreeDecimal1.DECIMAL=
{ select m2bvo from OBJALG
where syscode = &PropertyRef& }
Field.FreeDecimal10.-
DECIMAL; Field.FreeDecimal11.-
DECIMAL =select Kadoppvl,
Free25 from OBJALG where
syscode = &PropertyRef& or
Field.FreeDecimal10.DECIMAL;
Field.FreeDecimal11.DECIMAL
= { select Kadoppvl, Free25
from OBJALG where syscode =
&PropertyRef& }

Info

• Fields to be
populated.
Format: Field.-
<FieldName>.
<TYPE>-
=<SQL-select
statement>

Available types are:

◦ STRING

◦ INTEGER

◦ DECIMAL

◦ REFERENCE.INTEGER
and REFERENCE.STRING

◦ DATE / DATETIME

◦ CODESCODENAME

◦ CODESNAME

◦ DATETIME_PROPERTY

◦ DATETIME_TRANSACTION

• If more than one
field is to be

ReportSX/
CalculateSX

Data level 27

Key Value example / Info Extension
updated, then
separate them
with a semicolon
(;) as shown in
the last example.

• All the variables
in the query
(for example:
&PropertyRef&)
should be
defined.

• All the variables
should start and
end with an “&”
symbol

• SQL string can
be given as
one line with no
carriage returns
or can be divided
over more
lines. In the
last method the
query must start
with { character
and end with }

Details level
Based on SQL queries, Details level records can be filled. Consequently, these queries
can results in more records with more fields. You can define more BOs to process as
details level. These BOs have your own associated keys in the Aggregation properties
BO, based on their corresponding BO name.

Key Value example / Info Extension

Detail.BO.Name Detail.BO.Name=-
UsrDataAggregationDetail1;
usrDataAggregationDetail2

Info

• System name of
BO.

If more than one details BO has to be
created and updated, then separate

ReportSX

28 Details level

Key Value example / Info Extension
them with a semicolon (;) as shown in the
example.

<BO
name>.Data.-
BO.Association

UsrDataAggregationDetail.Data.BO.-
Association= DataAggregationDetail|
DataAggregationDataRef

Info

• Mandatory for
each system
BO that is
specified by
the previous
parameter

• Association
between Details
BO and Data
BO.

• This can be
obtained from
Field Definer
(Technical
information
tab, under
Associations).

ReportSX

<BO name>.
ProcessDetail-
RecordsForNon-
UpdatableData-
Records

UsrDataAggregationDetail.Process-
DetailRecordsForNonUpdatableData-
Records=n

Info

• Possible values:
y,n

• If value is y:
also for the
Data level
records that are
not in a status
for update, the
Details records
will be deleted
and inserted
again.

• If value is n: for
the Data level
records that are
not in a status
for update,

ReportSX

Details level 29

Key Value example / Info Extension
the Details
records will
not be deleted
nor updated or
inserted.

<BO name>.SQL.-
Statement.<serial
number>

UsrDataAggregationDetail.SQL.-
Statement.1= select CODE
as PropertyCode, NAAM as
PropertyName, M2BVO as
GrossArea from OBJALG where
SYSCODE = &PropertyRef&

or

UsrDataAggregationDetail.SQL.-
Statement.1=

{

select CODE as PropertyCode,
NAAM as PropertyName, M2BVO as
GrossArea from OBJALG

where SYSCODE = &PropertyRef&

}

Info

• SQL select
query to create
specific details
BO and fill its
fields.

• You can specify
more than one
SQL statement
for one details
BO. Each
identified by
its own unique
serial number.

Example
UsrDataAggregationDetail.SQL.-
Statement.1=
SELECT ...
UsrDataAggregationDetail.SQL.-
Statement.2=
SELECT ...
Records from both
queries will be added,

ReportSX

30 Details level

Key Value example / Info Extension
field assignment are
shared, see next key.

• SQL string
can be given
as one line
without carriage
returns or can
be divided over
more lines.
In the last
method, the
query must start
with { character
and end with }

<BO name>.SQL.-
Field.<sqlfield
name>.<type>-
=<BO field name>

UsrDataAggregationDetail.SQL.Field.-
PropertyCode.STRING=FreeString1
UsrDataAggregationDetail is
BO system name of details BO,
PropertyCode is SQL select field,
FreeString1 is system name of BO
field that has to be filled.

UsrDataAggregationDetail.SQL.-
Field.PropertyName.-
STRING=FreeString2
UsrDataAggregationDetail.SQL.Field.Gross-
Area.DECIMAL=FreeDecimal3

Info

• Fields of details
level to fill,
based on the
SQL.

• The fields can
be of all the
supported
types. The
types of the
selected fields
must match
with the Planon
ProCenter BO
fields that are
linked to it.

• The SQL must
select the
configured
fields, you can

ReportSX

Details level 31

Key Value example / Info Extension
define as many
fields as you
need.

• The defined
SQL
parameters can
be used in the
same way as for
the Data level.

Aggregation of fields

The data level can have a hierarchical structure. With the following keys you can define
to add the values of child records to their parent. The summary is processed bottom up,
from deepest to root level. So the values of grand children are added to their parent, all
the values of the parents are added to the grandparents and so on.

Key Value example / Info Extension

SUM.DECIMAL SUM.DECIMAL=Free-
Decimal1,FreeDecimal10, Free-
Decimal11

Info

• Aggregation
of fields.
Specify
DECIMAL
fields.

• The
aggregation
is performed
for all the
listed fields
in the value
part.

• These fields
need not
necessarily
be
populated
by this SX.

• If you do
not want
to execute
aggregate,

ReportSX

32 Aggregation of fields

Key Value example / Info Extension
the value
should be
empty.

SUM.DECIMAL.OVERWRITE SUM.DECIMAL.OVERWRITE=Free-
Decimal1,FreeDecimal10, Free-
Decimal11

Info

Same as for SUM.DECIMAL, but
the value of the parent record is
not taken into account. Its value
is the sum of all child values.

Example

Value child 1 is 10, value child
2 is 11, value of the parent is
12. After aggregation, the value
will be 33 if the OVERWRITE
property is not specified or 21 if it
is specified.

ReportSX

SUM.INTEGER SUM.INTEGER=FreeInteger8,-
FreeInteger10

Info

• Aggregation
of fields.
Specify
INTEGER
fields.

• The
aggregation
is performed
for all the
listed fields
in the value
part.

• These fields
need not
necessarily
be
populated
by this SX.

• If you do
not want
to execute
aggregate,
the value

ReportSX

Aggregation of fields 33

Key Value example / Info Extension
should be
empty.

SUM.INTEGER.OVERWRITE SUM.INTEGER.OVERWRITE=Free-
Decimal1,FreeDecimal10, Free-
Decimal11

Info

Same as for SUM.INTEGER, but
the value of the parent record is
not taken into account. Its value
is the sum of all child values.

ReportSX

34 Aggregation of fields

Scheduling of ReportSX or
CalculateSX

Scheduling
It is possible to run ReportSX and CalculateSX manually by changing the status of the
definition (container) level record. However, it is also possible to schedule this action.
Periodically an update run will be launched automatically.

Scheduling process
This scheduling task can be configured by using the built in scheduler. In fact, a status
change of the specific definition (container) record must be performed. This function is
available for the dedicated definition (container) BO (Data aggregation definition).

For more information refer to Scheduler (System Settings).

Scheduling process 35

https://webhelp.planoncloud.com/en/index.html#page/System%20Settings/c_Scheduled_Jobs_intro.html

Working with Data Aggregation
Manager

Data Aggregation Manager is primarily used for setting up a benchmark structure and
filling this structure with relevant management data. The final structure can have 3 levels
of data:

• Definition (container) level

Business object to define the benchmark with associated date fields etc.

• Data level

Business object linked to the definition (container) level with records of
aggregated data. There can be more data level records linked to the same
definition (container). It can have a hierarchical structure.
The data level records are based on the so called ‘benchmark entity’
business object. The members of the benchmark are defined at the
benchmark entity business object (e.g. Property). Only for the members, a
Data level record is added by DAM.

• Details level

Business objects linked to the data level with records of aggregated data.
There can be more details level business objects for the same data level
business object. Each details level business object can have more records.

36 Working with Data Aggregation Manager

ContainerSX
This is an extra component available to fill in the aggregated data, but not in the specific
benchmark structure.
The definition (container) record must be filled in manually. Some of the fields are
mandatory.

After saving the new definition (container) level record, the following step is processed:

Data level structure is created based on the benchmark entity business object (see
parameters in Field Definer). Only the members of the specified benchmark are added.
For each member, a record is added linked to the original benchmark entity record.
At this data level, a large set of empty fields is available. These can be filled by the
ReportSX process. Typically, the Property busines object is used as benchmark entity
business object, so it is possible to process a benchmark for each property (building). At
the benchmark entity business object, a field is configured to filter the members.

ReportSX
If the status of the definition (container) record for the specific benchmark is changed to
the configured statuses, the ReportSX is launched. After launch, the following steps are
processed:

• Data is filled in configured fields at data level.

Fields are filled based on SQL queriesin field.Properties in the Aggregation
properties business object.

• Sum fields are processed.

If certain fields are configured for aggregation, the values of the child fields
are added to the parents. If a certain field is not configured to be updated, it
will not be changed in an update situation (record already exists).

• Clean up existing details level business object records.

Before the details level records and fields are filled, it starts with deleting the
already existing records. There is a configuration that this is only performed
for the details level records that are not linked to a data level record that is
flagged for not updating.

• Details level business object records are added and fields are filled
with data.

The details level records are added and the fields are filled as configured.

• The status of the definition (container) level business object record is
updated.

After a successful calculation of data the status of the definition (container)
level business object record will be changed. If the processing by ReportSX
is not successful, an error pop-up will be displayed. Finally, logging of the run
is performed in the Comment field of the definition (container) level record.

ReportSX 37

CalculateSX
The CalculateSX is a simple version of the ReportSX and not specially intended for a
(benchmark) container construction. The CalculateSX can be configured for every BO in
order to aggregate data for it.

If the status of the business object is changed to the configured statuses, the
CalculateSX is launched. After launch, the following steps are processed:

• Data is filled in configured fields of the business object.

Fields are filled based on SQL queries in field.Properties in the Aggregation
properties business object.

• The status of the business object is updated.

After a successful calculation of data, the status of the business object record
will be changed. If the processing by CalculateSX is not successful, an
error pop-up will be displayed. Finally, logging of the run is performed in the
Comment field of the business object record.

Authorization in DAM
Since the data aggregation of the DAM is based on SQL, it is possible to view data
that is usually not visible for certain Planon ProCenter users. So, only users who have
appropriate access to the set of business objects used should be allowed to work with
the definition (container), data and details business objects.

DAM implementation steps
To use the DAM (ContainerSX and ReportSX) you have to follow the steps given below:

Step Description

Register
extensions

Register DAM extensions in SX Configuration (see
Registering extensions).

Prepare business
objects

1. Choose business object for the following
levels of data:

◦ Definition (container) level.

For example, Data aggregation definition.

◦ Data level.

For example, Data aggregation data.
2. Prepare which fields are to be filled with

what data by DAM.

38 DAM implementation steps

Step Description

3. Benchmark Entity BOs.
Choose a benchmark
entity business object (e.g.
Properties) to use as source
BO for the data level (see
Configuring ContainerSX in
Field Definer).

4. Details level (can be more than one).
E.g. Data aggregation details
(make user defined of it).

5. For each details level BO, you need to
prepare which field and what data should
be filled by DAM.

Prepare layouts
and TSI

After preparing the business objects, in Layouts prepare
the corresponding layouts to make sure the fields to be
filled are available.

Configure tool After you prepared all the BOs, layouts and TSI, you can
configure the DAM:

1. Add extensions to the definition (container)
level business object in Field Definer (see
Configuring ContainerSX in Field Definer).

2. Configure parameters.

Aggregation
properties BO

In the Property field, include all SQL related settings.
Based on the SQL, the aggregated data will be created.

Creating SQL queries is a specialist task that requires
appropriate skills. This task should be done by a Planon
ICT specialist.

For more information about the data structure of the
database, see the Planon data dictionary, an HTML page
that contains detailed information of the Planon database
and which is updated each time the data structure is
changed.

Insert definition
(container) record

Add a definition (container) record manually; DAM
automatically constructs the data level structure based on
the configured benchmark entity BO after saving.

Change status
of definition
(container) record

If the status of a definition (container) record is changed
to one of the configured statuses, the fields at the data
level will be filled based on the SQL definitions. Also, the
details level records will be created and filled with data.

DAM implementation steps 39

https://databasedictionary.planonsoftware.com/

Step Description

If the data and details level record are already filled, you
can update them to change to one of the configured
statuses.

Updating is available for the status of the data level
record. If they are in the right status, to update the
configured data level, fields are overwritten and the
details level records are deleted and added again.

If the data level records are not in the right status, the
existing fields and details level record will be unchanged
(is configurable for details level).

40 DAM implementation steps

Field descriptions

The following section(s) describe(s) the fields, their purpose and meaning.

Aggregation data - fields
The following fields are available on Aggregation data level.

PnName Translated name

ParentRef Parent level

HierarchyCode Hierarchy code

DataAggregationDefinitionRef Aggregation definition

RefBOStateSystem System status

RefBOStateUserDefined User-defined status

RefBODefinitionUserDefined User-defined type

SysChangeDateTime Modification date-time

SysInsertDateTime Insertion date-time

SysChangeAccountRef Modified by

SysAccountRef Inserted by

Money1 -50 Money field 1 - 50

Area1-15 Area 1-15

FreeInteger1-20 Free reference field 1-20

FreeDecimal1-100 Free numerical field 1-100

FreeDateTime1-20 Free date-time field 1-20

FreeRemark01-02 Free remark field 1-2

In Field Definer, it is possible to include a user defined system name for free fields: Area,
Money, FreeInteger, FreeDecimal, FreeDateTime, FreeRemark. This will allow you to
provide a name that fits its purpose and use that for filtering in your data lake, for example.

Aggregation data - fields 41

Aggregation details - fields
The following fields are available on Aggregation details level.

PnName Translated name

DataAggregationDataRef Aggregation data

BOType Business object type

Code Code

SysAccountRef Inserted by

SysInsertDateTime Insertion date-time

SysChangeDateTime Modification date-time

SysChangeAccountRef Modified by

Name Name

SysDataSectionRef Property set code

Syscode System code

RefBOStateSystem System status

SysUpdateCount Update count

RefBOStateUserDefined User-defined status

RefBODefinitionUserDefined User-defined type

Money1 -50 Money field 1 - 50

Area1-15 Area 1-15

FreeString1-60 Free field 1-60

FreeInteger1-20 Free reference field 1-20

FreeDecimal1-100 Free numerical field 1-100

FreeDateTime1-20 Free date-time field 1-20

FreeRemark01-02 Free remark field 1-2

42 Aggregation details - fields

In Field Definer, it is possible to include a user defined system name for free fields: Area,
Money, FreeInteger, FreeDecimal, FreeDateTime, FreeRemark. This will allow you to
provide a name that fits its purpose and use that for filtering in your data lake, for example.

Aggregation details - fields 43

Index

Index
A

Aggregation data - fields 41
Aggregation details - fields 42
Authorization 38

C
CalculateSX 38
CalculateSX: Configuring 13
CalculateSX: Field Definer 13
ContainerSX 37
ContainerSX: configure in Field Definer
8

D
DAM 6
DAM: implementation steps 38
Data Aggregation Manager 6
Data aggregation properties
configuration 16
Data level 26
Data level: field aggregation 32
Data level: fields 26
Data level: SQL 26
Details level 28

F
Field aggregation 32
Field descriptions 41

G
General configuration 16

R
Register extensions 8
ReportSX 37
ReportSX or CalculateSX: schedule 35
ReportSX: Configuring 12
ReportSX: Field Definer 12

S
Scheduling process 35, 35
SQL variables 22
SX Configuration 8

W
Working with DAM 36

44 - Index

	Table of Contents
	Data Aggregation – An Introduction
	Configuration of Data Aggregation
	Registering extensions
	Configuring ContainerSX in Field Definer
	Configuring ReportSX in Field Definer
	Configuring CalculateSX in Field Definer
	Data aggregation properties business object

	Configuring Data aggregation properties
	Aggregation properties BO for ReportSX and CalculateSX
	General configuration
	Variables to use in SQL
	SQL for Data level
	Data level
	Details level

	Aggregation of fields

	Scheduling of ReportSX or CalculateSX
	Scheduling
	Scheduling process

	Working with Data Aggregation Manager
	ContainerSX
	ReportSX
	CalculateSX
	Authorization in DAM
	DAM implementation steps

	Field descriptions
	Aggregation data - fields
	Aggregation details - fields

	Index

